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“non bisogna aspettare di essere felici per sorridere, ma sorridere per essere felici”.

Grazie a Miche in cui trovo sempre una persona capace di ascoltare, che ha sempre

le parole giuste e conosce il valore del silenzio. È una delle poche persone che conosco
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a diventare quello che sono oggi.

Quindi, grazie. Senza di voi questa tesi e questa persona non esisterebbero.

vi



There are no problems, only challenges.

vii



List of Publications

Enrico Rossi

1. F. Civerchia, E. Rossi, L. Maggiani , S. Bocchino, C. Salvadori and M. Petracca,
“Lightweight Error Correction Technique in Industrial IEEE802.15.4 Networks”,
42nd Annual Conference of IEEE Industrial Electronics Society (IECON), Firenze, Italy,
(2016)

2. A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni and G. Buttazzo, “A
Framework for Supporting Real-Time Applications on Dynamic Reconfigurable
FPGAs”, 37th IEEE Real-Time Systems Symposium (RTSS), Porto, Portugal, (2016)

3. F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani and M. Petracca,
“Industrial internet of things monitoring solution for advanced predictive mainte-
nance applications”, Journal of Industrial Information Integration, (2017)

4. E. Rossi, M. Damschen, L. Bauer, G. Buttazzo and J. Henkel, “Preemptive Partial
Reconfiguration to Enable Real-Time Computing with FPGAs”, Transactions on
Reconfigurable Technology and Systems, (2018)

viii



Abstract

Towards the heterogeneous, real-time reconfigurable embedded system

by

Enrico Rossi

To improve the computing performance in real-time applications, modern embedded

platforms comprise hardware accelerators that speed up the tasks’ most compute-

intensive parts. A recent trend in the design of real-time embedded systems is to

integrate field-programmable gate arrays (FPGA) that are reconfigured with different

accelerators at runtime, to cope with dynamic workloads that are subject to timing

constraints, like in signal processing or computer vision applications.

One of the major limitations when dealing with partial FPGA reconfiguration in real-

time systems is that the reconfiguration port can only perform one reconfiguration at a

time: if a high-priority task issues a reconfiguration request while the reconfiguration

port is already occupied by a lower-priority task, the high-priority task has to wait until

the current reconfiguration is completed (a phenomenon known as priority inversion),

unless the current reconfiguration is aborted (introducing unbounded delays in low-

priority tasks, a phenomenon known as starvation).

Moreover, hardware accelerators reconfigured at runtime inside the FPGA usually

require minimum interaction with the software side and perform massive computations

on data which have to be read from the main memory or written to it. Therefore, In

case of high-throughput hardware accelerators may happen that the communication

medium shared between main memory and hardware and software sides is not able to

accept more requests jeopardizing the functioning of the whole system. Furthermore,

as the software can not control each bus transaction of an hardware accelerator, mis-
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designed accelerators could perform illegal memory accesses corrupting the main

memory.

This thesis shows how priority inversion and starvation can be solved by making

the reconfiguration process preemptive, i.e., allowing it to be interrupted at any time

and resumed at a later time without restarting it from scratch. Such a feature is crucial

for the design of runtime reconfigurable real-time systems, but not yet available in

today’s platforms. Furthermore, the trade-off of achieving a guaranteed bound on

the reconfiguration delay for low-priority tasks and the maximum delay induced for

high-priority tasks when preempting an ongoing reconfiguration has been identified

and analyzed.

Besides, this work addresses the problems of memory protection and bus pre-

dictability by showing a solution to prevent hardware accelerators from choking the

communication bus or performing illegal memory accesses, making the communication

more predictable and allowing for more precise analysis. A custom memory protection

and budgeting unit (MPBU) has been developed for this purpose.

Experimental evaluation on the Xilinx Zynq-7000 platform have been realized for

preemptive reconfiguration and MPBU. Results show that the proposed implementa-

tion of preemptive reconfiguration introduces a low runtime overhead, thus effectively

solving priority inversion and starvation. Moreover, experimental results show that

memory corruption and bus chocking problems can be avoided and the communication

over a shared bus can be made more predictable allowing to have less stringent timing

constraints in the analysis.
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Chapter 1

Introduction

1.1 The Heterogeneous, Real-Time Computing Era

Real-time systems are ubiquitous in our everyday life, e.g., in safety-critical domains

such as automotive, avionics, or the rapidly growing domain of smart/autonomous

machines (e.g., robotics or automated driving). In contrast to general-purpose com-

puting systems, the correctness of a real-time system depends not only on the results

of its computations, but also on the time at which outputs are produced. Delivering

a result after a predetermined deadline may lead to malfunctions that can jeopardize

the entire system. Therefore, for many safety-critical systems it is essential to guarantee

that all time-sensitive computations are able to complete their execution within their

deadlines.

To improve the performance of real-time systems, modern embedded platforms

comprise hardware accelerators that speed up the tasks’ most compute-intensive parts.

Current computer architectures are evolving towards heterogeneous platforms con-

sisting of hybrid computational devices that may include processors of different types

and field programmable gate arrays (FPGAs). In particular, the reprogrammable capa-
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bilities of FPGAs, their increasing capacity, and their suitability for signal processing

have made them attractive in several application domains as alternatives to application

specific integrated circuits (ASICs) [1]. Xilinx [2] provided an analysis of recent progress

in field programmable logic, highlighting that FPGAs have become bigger (comprising

several million gates and up to a million bits of on-chip memory), faster (allowing

system clock rates up to 200 MHz and I/O speed of up to 800 Mbits/second), more

versatile (featuring dedicated carry structures to support adders, accumulators and

counters), and cheaper, in terms of cost per logic gate.

A recent trend in the design of real-time embedded systems is to integrate FPGAs

that are reconfigured with different accelerators at runtime, to cope with dynamic

workloads, like in signal processing or computer vision applications [3, 4, 5, 6, 7].

For instance, platforms like the Xilinx Zynq or Altera SoC combine general-purpose

CPUs with an FPGA on a single chip to enable the development of application-specific

accelerators that can run on the FPGA in parallel with the software executing on the

CPU. Low-latency channels enable communication between accelerators and software.

In addition, the possibility of reconfiguring specific portions of the FPGA at speeds

of 400 MB/s enables the adoption of runtime virtualization techniques to share the

FPGA among multiple tasks in different time windows, so extending the number of

functions that can be accelerated. Such a virtualization technique for the FPGA has been

proven to be effective to achieve a significant speedup in real-time applications [8, 6].

Virtualization is generally realized using partial FPGA reconfiguration, where parts of

the FPGA are reconfigured while the remaining configuration remains fully functional.
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1.2 FPGAs and Dynamic Partial Reconfiguration

FPGAs are in demand for their inherent rapid-prototyping and reconfiguration

capabilities. The reconfigurable computing [9] is an interesting alternative to ASICs

and general-purpose processors for implementing embedded systems, since it offers

the flexibility of software processors and the efficiency and throughput of hardware

co-processors.

Modern FPGA chips allow dynamic partial reconfiguration capabilities, enabling

the user to reconfigure a portion of the FPGA dynamically (at runtime), while the

remainder of the device continues to operate [10]. This is especially valuable in mission-

critical systems that cannot be disrupted while some subsystems are being redefined.

In this context, mission-critical functions could continue to meet external interface re-

quirements while other reconfiguration regions are reprogrammed to provide different

functionality.

Partial reconfiguration is also useful in systems where multiple functions share the

same FPGA resources. In such systems, one section of the FPGA continues to operate,

while other sections are reconfigured to provide new functionality. Such an interesting

capability opens a new scheduling dimension for applications running on heteroge-

neous platforms. As in multitasking, where multiple applications share the processors

by switching contexts between software processes, dynamic partial reconfiguration en-

ables the possibility of interleaving multiple functions implemented as programmable

logic on an FPGA recurrently shared by different processing components.

Partially reconfigurable FPGAs have many advantages over its non-reconfigurable

counterparts. To list a few, a partially reconfigurable system can be re-synthesized

after careful considerations resulting in the decrease of design time and consequently

reducing the time-to-market. In the same way, parts of such systems can be altered
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without having to shut down or even halt the system in its entirety, which undoubtedly

enhances the system customizability and maintainability. Reconfigurable systems

also allow the implementation of adaptive embedded systems incorporating self-

optimization, self-organization of the system setup and self-adaptation to unpredictable

changes in the environment [11]. In addition, the possibility of reconfiguring specific

portions of the FPGA enables the adoption of runtime virtualization techniques to

share the FPGA among multiple tasks in different time windows, so extending the

number of functions that can be accelerated thus virtually extending the dimension of

the FPGA. Such a virtualization technique for the FPGA has been proven to be effective

to achieve a significant speedup in real-time applications [8, 6].

Although the partial reconfigurability of FPGAs offer new possibilities from the

application perspectives, yet they pose many design challenges for today’s demanding

applications. Of the few challenges currently being researched on in this field, some

are related to reconfiguration time [12], dynamic allocation and placement of hardware

tasks in reconfigurable regions [13], design and development of an on-line scheduler

responsible for scheduling real-time tasks to reconfigurable regions [14] [15].

One of the major limitations when dealing with partial FPGA reconfiguration is that

the reconfiguration port can only perform one reconfiguration at a time. This means

that when multiple tasks issue simultaneous requests to reconfigure different portions

of the FPGA fabric, such requests must be serialized according to a given scheduling

algorithm. In current implementations, the reconfiguration port of the FPGA does not

allow preemptions; that is, once a reconfiguration process is started, it can either be

completed or aborted. In other words, if a high-priority task issues a reconfiguration

request while the reconfiguration port is already occupied by a lower-priority task, the

high-priority task has to wait until the current reconfiguration is completed, unless the

current reconfiguration is aborted to be restarted later from the beginning (see Chap-
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ter 3). Unfortunately, considering the relatively long reconfiguration delays of current

platforms1, e.g., compared to context switching, both such solutions are not suitable for

real-time applications. In fact, while non-preemptive reconfigurations introduce long

delays in high-priority tasks (a phenomenon known as priority inversion [16]), aborting

them may introduce unbounded delays in low-priority tasks (a phenomenon known

as starvation). Both problems can be avoided by making the reconfiguration process

preemptive, allowing it to be interrupted at any time and resumed at a later time from

the point of interruption. Such a feature is not yet available in today’s platforms.

Despite this limitation, there is a clear evolution trend showing that reconfiguration

times are progressively decreasing. Liu et al. [17] designed a smart reconfiguration

peripheral interface, based on the Xilinx internal configuration access port (ICAP)

port [18], that is able to approach a throughput of 400 MB/s. Also, Duhem et al. [19]

designed a fast reconfiguration interface by over-clocking the ICAP port up to 200

MHz, corresponding to a throughput of 800 MB/s. An overview of the trend of

reconfiguration times (obtained by comparing the theoretical maximum throughput

calculated from platforms’ datasheets) is shown in Figure 1.1, based on the study

conducted by Pagani et al. [20]. For this reason, it is plausible to expect that such a

trend will continue in the upcoming years, thus making dynamic partial reconfiguration

a relevant direction to be explored.

Although reconfiguration times are not negligible, FPGAs allow hardware acceler-

ation of a wide class of algorithms with a significant speedup factor [21, 22] over the

corresponding sequential software implementation. In the case study analyzed in the

work by Biondi et al. [6], a speedup factor up to 15x has been measured for an image

1For example: on the Xilinx Zynq-7010 platform which currently is the lower-end in terms of

reconfigurable resources, a maximum reconfiguration bandwidth of 400 MB/s is supported, however,

reconfiguring 25% of the total resources still takes more than 2 milliseconds.
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Figure 1.1: Trend of reconfiguration throughput.

processing filter implemented on the Zynq-7010 platform, which can reach a through-

put of 145 MB/s for the dynamic partial reconfiguration, allowing to reconfigure an

FPGA area containing about 25% of the total resources in less than 3 milliseconds.

1.3 Memory Protection and Bus Predictability

Other challenges of integrating partially reconfigurable FPGAs in real-time systems,

reside in the system bus unpredictability. Real-time systems must be correct not only in

the correctness and accuracy of calculations but also in the execution time. In particular,

all the operation should be finished before deadlines [23].

Real-time systems can be classified into hard real-time systems and soft real-time

systems according to the type of constraints applied on tasks. Tasks with a hard-

deadline belongs to hard real-time systems where tasks are required to finish their

execution strictly before the deadline or fatal mistakes would happen. On the other

side, the violation of timing constraints in soft real-time system just leads to system
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delay [24, 25].

Real-time tasks are required to fulfill two main requirements: timeliness of re-

sponses which demand tasks to quickly respond a request, and predictability of re-

sponse time which requires the task computation time to be computable [26].

Therefore, real-time systems which integrate FPGAs as accelerators have to comply

with those requirements too. Software tasks could require hardware acceleration to

speed-up their computation thus reducing the computation time and meeting their

deadlines. In particular, systems integrating system-on-chips2 (SoCs) or simple FPGAs

where custom accelerators are loaded at run-time inside the FPGA, may violate real-

time requirements due to the unpredictability of the communication medium between

hardware and software sides.

In fact, usually in those systems hardware accelerators require minimum interaction

with the software side and perform massive computations on data which have to be

read from the main memory or written to it. Moreover, as the main memory and

the hardware and software sides connect on the same communication medium, a

shared memory approach is the most common and straightforward method to provide

communication between them: the software side shares with the hardware, part of the

memory where both have full access.

In case of hardware accelerators that produce high traffic on the communication

bus may happen that the bus is not able to accept more requests making other software

tasks, which required hardware acceleration, miss their deadlines. Moreover, as the

software can not control each bus transaction of an hardware accelerator, otherwise

the computational speed-up will drastically decrease, mis-designed accelerators could

perform illegal memory accesses corrupting the main memory.

2SoC FPGAs consist of processor, peripherals, and memory interfaces with the FPGA fabric using a

high-bandwidth interconnect backbone.
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The same problems regarding the enhancement of application predictability and

memory protection, have been addressed in pure software environments by the work of

Cucinotta et al. [27]. They tackle the problem of providing Quality of Service guarantees

to virtualized applications, focusing on computing and networking guarantees. They

propose a mechanism for providing temporal isolation based on a CPU real time

scheduling strategy allowing not only to have control over the individual virtual

machine throughput, but also on the activation latency and response-time by which

virtualized software components react to external events.

Moreover, the work by Liang et al. [26] shows a high-speed and time-predictable

bus architecture called RTBus, where high-performance AXI protocol is employed.

They developed a real-time bus arbitration algorithm to accurately calculate the bus

access time for master devices.

This thesis presents the first solution for achieving preemptive partial reconfigu-

ration of hardware accelerator’s reconfiguration onto an FPGA, preventing problems

caused by a non-preemptable reconfiguration port shared among multiple tasks need-

ing hardware acceleration. Moreover, it addresses the problems of memory protection

and bus predictability by showing a solution to prevent hardware accelerators from

choking the communication bus or performing illegal memory accesses, making the

communication more predictable and allowing for more precise analysis.

Chapter 2 gives the required background on FPGAs. In particular, it present a

general overview regarding FPGA’s architecture and features, focusing on the most

commonly used communication bus (the advanced extensible interface - AXI) and

deeply explaining the dynamic partial reconfiguration feature.

Chapter 3 shows the problems that could arise using a non-preemptable shared

8



resource, i.e., the reconfiguration port, and a possible solution using preemptable partial

reconfiguration. Furthermore, possible communication problems between hardware

and software sides are presented. Eventually, the main contributions of this work are

shown.

Chapter 4 presents a real implementation of preemptive partial reconfiguration,

focusing on finding valid resumption points for preempted reconfigurations inside

Xilinx’s partial bitstreams. Moreover, the same chapter describes the implementation

of a memory protection and bus budgeting unit that aims at avoiding illegal memory

transactions and performs bus’ bandwidth budgeting for hardware accelerators. It also

describes the software interface that has been realized to correctly use the developed

hardware IPs for preemptive partial reconfiguration, memory protection and bus

budgeting.

Furthermore, Chapter 5 determines worst-case bounds on the latency overhead

that a higher-priority task experiences, when preempting a lower-priority task. It also

determines an upper bound on the reconfiguration delay for reconfiguration requests

from the lower-priority task for a given worst-case interval of reconfiguration pre-

emptions and discuss under which circumstances preemption guarantees a minimum

progress for these reconfigurations. Chapter 5 ends explaining what would be required

to realize a worst-case analysis of a typical communication chain between CPU and

FPGA and shows the limitations due to the lack of a detailed, public documentation of

ARM and Xilinx IPs.

Eventually, Chapter 6 shows the performed evaluation of preemptive partial recon-

figuration and bus’s bandwith budgeting on a real hardware platform integrating a

Xilinx Zynq-7000 SoC.

Chapter 7 concludes this thesis and provides open future perspectives.
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Chapter 2

Background

In order to fully understand what has been done in this work, it is first necessary

to present tools and technological solutions that have been used explaining their

advantages and disadvantages. Therefore, this chapter introduces field-programmable

gate arrays (FPGAs) (see Section 2.1) describing their general architecture and showing

how nowadays systems can benefit from integrating an FPGA in their solutions.

Moreover, Section 2.2 describes the Advanced eXtensible Interface (AXI) which is

the most common communication medium used by FPGAs.

Eventually, the chapter ends with the description of a particular feature of Xilinx’s

FPGAs: dynamic partial reconfiguration. In particular, Section 2.3 introduce the par-

tial reconfiguration feature describing its functioning and showing how the FPGA

configuration file can be decoded for preemptive partial reconfiguration.

2.1 Field Programmable Gate Arrays

A field-programmable gate array (FPGA) is an integrated circuit designed to be

configured by the user after manufacturing. Previously, as it was for application specific
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integrated circuits (ASICs), FPGAs were configured using circuit diagrams but this

method is increasingly rare as it is inconvenient and error prone for large designs.

Nowadays the FPGA is generally configured using a hardware description language

(HDL) that is a specialized computer language used to describe the structure and

behavior of electronic circuits, and most commonly, digital logic circuits. HDLs were

created to implement register-transfer level (RTL) abstraction, a model of the data flow

and timing of a circuit [28], and enable a precise, formal description of an electronic

circuit that allows for its automated analysis and simulation.

Architecture FPGAs have become one of the key digital circuit implementation media

over the last decade. They are heterogeneous compute platforms that include RAMs,

DSPs, look-up tables (LUTs) and an array of configurable logic blocks (CLBs) that are

connected to each other through programmable routing interconnections (PRIs). A CLB

is the basic component of an FPGA which provides the basic functionalities, logic and

storage capabilities. Commercial vendors like Xilinx and Altera use LUT-based CLBs to

provide basic resources and functionality. Figure 2.1 shows a generalized structure of

an FPGA where CLBs are arranged in a two-dimensional grid and are interconnected

by a PRI blocks. PRIs enable parallelism and pipelining of applications across the entire

platform as all of these compute resources can be used simultaneously.

Contemporary FPGAs have large resources of logic gates and RAM blocks to im-

plement complex digital computations. Some FPGAs have analog features in addition

to digital functions. The most common analog feature is programmable slew rate

on each output pin, allowing the user to set low rates on lightly loaded pins that

would otherwise have unwanted oscillation, and to set higher rates on heavily loaded

pins on high-speed channels that would otherwise run too slowly. Also common are

quartz-crystal oscillators, on-chip resistance-capacitance oscillators, and phase-locked
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Figure 2.1: Generalized example of an FPGA architecture where configurable logic

blocks (CLBs) are arranged in a two-dimensional grid and are interconnected by

programmable routing interconnection (PRIs). PRIs also connect input/output (I/O)

blocks with the internal configurable logic.
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loops with embedded voltage-controlled oscillators used for clock generation and

management and for high-speed communication interfaces.

A crucial part of FPGA’s creation lies in their architecture, which governs the

nature of their programmable logic functionality and their programmable interconnect.

Therefore, the architecture and especially the interconnect network has a dramatic

effect on the quality of the final device’s speed performance, area efficiency, and power

consumption.

The routing interconnect consists of programmable switches and wires which are

used to build the required connection. As FPGAs claim to be a candidate to implement

any type of digital circuits, their routing interconnect has to be very powerful and

flexible in order to accommodate different circuits and their routing demands.

Different digital circuits require different routing networks but it is possible to

define two types of routing: local routing and global routing. These routing methods

connect logic blocks through the entire chip (global routing) or sections of it (local

routing) with small propagation delay. Moreover, modern FPGA have specific routing

resources to correctly route clock signals through the whole FPGA with the smallest

possible propagation delay [29].

Advantages and Disadvantages The main advantage of FPGAs, i.e., flexibility, is also

the major cause of its draw back. Flexible nature of FPGAs makes them significantly

larger, slower, and more power consuming than their ASIC counterparts. These dis-

advantages arise largely because of the programmable routing interconnect of FPGAs

which comprises of almost 90% of total area of FPGAs.

Despite these disadvantages, FPGAs present a compelling alternative for digital

system implementation due to their less time to market and low volume cost.

In general, computing systems based on FPGAs provide many advantages over
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conventional ASIC implementations [30]:

• Easy upgrade. In contrast to traditional computer chips, FPGAs are completely

configurable and functionalities can be upgraded at any time.

• Long-term maintenance. FPGAs enable independency from component manufac-

turers and distributors, since FPGA chips can be reprogrammed to include new

functionalities or upgrade the existing ones. Moreover, newer FPGAs support

dynamic partial reconfiguration allowing to reconfigure only a portion of them

while the rest of the logic continues to operate.

• Short time to market. The development of hardware prototypes is significantly

shorter, since ideas and concepts can be verified in hardware without going

through the long fabrication process of custom ASIC design. Moreover, the

growing availability of high-level software tools decreases the learning curve with

layers of abstraction and often offers valuable pre-built functions for advanced

control and signal processing.

• Efficiency. Systems can be customized for the designated task.

• Cost. The silicon programmability removes fabrication costs and lead times

for assembly. Because system requirements often change over time, the cost of

making incremental changes to FPGA designs is negligible compared to the one

of redesigning an ASIC.

• High performance. Taking advantage of hardware parallelism, FPGAs exceed the

computing power of digital signal processors (DSPs) by accomplishing more

operations per clock cycle. Also, controlling inputs and outputs at the hardware

level provides faster response times and specialized functionality to closely match

application requirements.
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• Real-time applications. In contrast to software activities running in real-time operat-

ing systems, FPGAs provide a more deterministic behavior, minimizing reliability

concerns with true parallel execution and deterministic dedicated hardware.

2.1.1 Softcores and System-on-Chip

Traditionally, FPGAs have been used only for application specific hardware designs.

However, as their capacity and complexity increased with the advance in VSLI1 tech-

nology, more complicated circuits and systems became possible. Vendors as Xilinx and

Altera started providing general purpose softcores (also called softprocessors) solutions

which enable to synthesize a programmable processor using the FPGA logic along with

other IP blocks allowing users to develop more sophisticated systems.

General purpose softcores allows for quick prototyping of architectures where the

advantages of both software and hardware design methodologies are mixed together.

They offer designers tremendous flexibility during the design process, allowing full

configuration of the processor to meet system’s constraints [31]. Moreover, a softcore-

based design outperforms the traditional hardware-based design in terms of rapid

prototyping, debugging capabilities and development time and cost while, compared

to a purely software-based design is much more flexible for a hardware extension that

replaces the critical kernel of the application.

It is well known that designs based on general purpose softcores lack in terms of

performances and power consumption but the previously mentioned advantages, flexi-

bility and scalability, allow it to be competitive against traditional methodologies [32].

In the early 1990s, the term ASIP has emerged denoting processors with an ap-

plication specific instruction set 2 and as FPGAs provide resources to build custom

1Very Large Scale Integration
2A general overview of benefits and challenges of ASIPs is given by Henkel in [33]
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hardware modules, it is possible to build custom softcores, similar to ASIPs to fulfill

application-specific requirements. Unfortunately, ASIP approach assumes that cus-

tomizations are undertaken during design-time with little or no adaptation possible

during run-time [34]. It is indeed hard or even impossible to predict the performance

or other design criteria accurately during design time. Consequently, the more critical

design decisions are fixed during design time, the less flexible an embedded processor

can react to non predictable application behaviors [35].

Reconfigurable computing [36, 37, 38] i.e., FPGAs featuring dynamic partial re-

configuration, may address this problem by enabling dynamic adaptivity through

partial reconfiguration of the FPGA [35, 39, 40]. In fact, Bauer et al. in [34] combine the

paradigms of extensible processor design and dynamic re-configuration in order to

address dynamic changes of application’s characteristics due to switching to different

operation modes or changes in design constraints (e.g., systems runs out of energy).

Besides the approach of targeting full computational tasks in reconfigurable hard-

ware [39] and the research for CPU-attached reconfigurable systems mainly focused

on design-time predefined reconfiguration decisions. This is not suitable when com-

putational requirements/constraints change during run time and are unpredictable

during design time. Vassiliadis et al. present the Molen Processor which couples

reconfigurable hardware to a base processor via a dual-port register file and an arbiter

for shared memory [41]. In Vassiliadis et al. approach, the run-time reconfiguration is

explicitly predetermined by additional instructions. The OneChip98 project [42] uses a

Reconfigurable Functional Unit (RFU) that is coupled to the host processor and that

obtains its speedup mainly from streaming applications. Eventually, Hauck et al. show

that separating reconfigurable logic from the host processor, current custom computing

systems suffer from a significant communication bottleneck. Therefore they designed

Chimaera [43], a system that overcomes the communication bottleneck by integrating
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reconfigurable logic into the host processor itself.

Besides general purpose and custom softcores, newer FPGAs exploit the System-on-

Chip (SoC) technology which consists of the integration of multiple silicon die inside

the same package. Those SoC FPGAs embed a more powerful, single or multi-core

hard-processor which primarily differs from a softcore in the integration method: the

hard-processor is directly integrated on a silicon die and connected to the FPGA die

through an high-performance communication bridge.

Therefore, SoC FPGAs consist of a processor, peripherals, and memory interfaces

with the FPGA fabric using a high-bandwidth interconnect backbone. It combines the

performance and power savings of hard intellectual property with the flexibility of

programmable logic. In particular, SoC FPGAs allow to reduce system power, cost,

and board size by integrating discrete processors and digital signal processing (DSP)

functions into a single FPGA and improving system performance via high-bandwidth

interconnect between the processor and the programmable fabric.

Using a SoC FPGA and exploiting hardware acceleration allows meeting real-

time constraints in applications where even high-end PCs usually fail. He et al. [44]

present an FPGA-based SoC implementation of an efficient and robust face detection

algorithm [45] that uses a cascaded Artificial Neural Network classification scheme

based on AdaBoost-trained Haar features [46, 47]. They designed a face detection

system which can detect faces at speeds of roughly two orders of magnitude (100×)

higher than the corresponding software implementation running on a 2.4GHz CPU.

Moreover, the work by Oetken et al. [48] proposes an FPGA-based SoC architecture

with support for dynamic runtime reconfiguration in a smart camera case study. They

implemented a reconfigurable design with support for free module placement and

an enhanced memory access method for high-speed communication with an external

memory.
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2.2 Advanced eXtensible Interface (AXI)

Together with the introduction of soft-cores and SoCs and their increase in compu-

tational power, the communication efficiency between cores and the FPGA has become

a botleneck which limits the performance of systems based on those solutions [49][50].

Thanks to the flexibility of FPGAs, it is possible to implement with the internal logic a

communication medium which allows the communication between soft/hard cores

and hardware IPs integrated in the configurable fabric. Therefore, a standard bus

architecture has been introduced in such devices in order to realize an efficient, flexible

and powerful communication bus.

The Advanced eXtensible Interface (AXI) protocol is used by many SoCs and FPGAs

today and is part of the ARM Advanced Microcontroller Bus Architecture (AMBA)

specification [51]. The AMBA 4 AXI protocol builds on many benefits of the AMBA

3.0 AHB standard by greatly extending the performance and flexibility of the on-chip

bus [52][53][54]. The AXI protocol provides the communication rules that different

modules on a chip needs to abide by to communicate with each other. It is based on a

handshake-like procedure before all transmissions and allows provides an effective

medium for transfers of data between the existing components on the chip.

The main specifications of the protocol are summarized below:

• Before transmission of any control signals, addresses or data, both master and

slave must extend their “hand” for a handshake via ready and valid signals.

• Separate phases exist for transmission of control signals, addresses and data.

• Separate channels exist for transmission of control signals, addresses and data.

• Burst type communication allows for continuous transfer of data.
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In particular, the interface works by establishing communication between master

and slave devices. Between these two devices, five separate channels exist: Read

Address, Write Address, Read Data, Write Data, and Write Response. Each channel

has its own unique signals as well as similar signals existing among all five. The

valid and ready signals exist for each channel as they allow for the handshake process

to occur for each channel. For transmitting any signal (control signals, addresses

or data) the relevant channel source provides an active valid signal and the same

channel’s destination must provide an active ready signal. After both signals are active,

transmission may occur on that channel. As stated above, the transmission of control

signals, addresses or data, are done in separate phases, therefore an address must

always be transferred before the handshake process can occur for the corresponding

data transfer. In the case of writing information, the response channel is used at the

completion of the data transfer.

Furthermore, there are additional options that the protocol provides which in-

crease its complexity, such as burst transfer, quality of services (QoS) and protections.

These options are simply extra signals existing on the different channels that allow for

additional functionality.

2.2.1 AXI4 Interface

The AXI bus is especially prevalent in Xilinx’s Zynq devices, providing the inter-

face between the processing system and programmable logic sections of the chip. In

particular, Xilinx adopted the AXI4 version included in the AMBA 4.0 release. There

are three types of AXI4 interfaces:

• AXI4 for high-performance memory-mapped requirements. It allows bursts of

up to 256 data transfer cycles with just a single address phase.
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• AXI4-Lite a subset of AXI4 for simple, low-throughput memory-mapped commu-

nication. It is a single transaction memory mapped interface, has a small logic

footprint and is a simple interface to work with.

• AXI4-Stream for high-speed streaming data. It removes the requirement for an

address phase altogether and allows unlimited data burst size. AXI4-Stream inter-

faces and transfers do not have address phases and are therefore not considered

to be memory-mapped.

Xilinx adopted the Advanced eXtensible Interface (AXI) protocol for Intellectual

Property (IP) interconnection and as a communication medium between cores and

FPGA inside SoCs. AXI4 provides improvements and benefits to productivity, flexibility,

and availability. Indeed improves productivity by standardizing on the AXI interface,

enhances flexibility providing the right protocol for the specific application and increase

availability by moving to an industry-standard.

AXI4 The AXI specifications describe an interface between a single AXI master and

a single AXI slave, representing IP cores that exchange information with each other.

Memory mapped AXI masters and slaves can be connected together using a structure

called an Interconnect block. The Xilinx AXI Interconnect IP contains AXI-compliant

master and slave interfaces, and can be used to route transactions between one or more

AXI masters and slaves [51].

Both AXI4 and AXI4-Lite interfaces consist of five different channels: Read/Write

Address Channel, Read/Write Data Channel and a Write Response Channel. Data

can move in both directions between the master and slave simultaneously, and data

transfer sizes can vary. As shown in Figure 2.2, AXI4 provides separate data and

address connections for reads and writes, which allows simultaneous, bidirectional
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Figure 2.2: AXI channel architecture. The organization of the read channel on the left

side and of the write channel on right side.

data transfer. AXI4 requires a single address and then bursts up to 256 words of data.

The AXI4 protocol describes a variety of options that allow AXI4-compliant systems

to achieve very high data throughput. Some of these features, in addition to bursting,

are: data upsizing and downsizing, multiple outstanding addresses, and out-of-order

transaction processing.

AXI4-Stream The AXI4-Stream protocol defines a single channel for transmission of

streaming data. The AXI4-Stream channel is modeled after the write data channel of

the AXI4. Unlike AXI4, AXI4-Stream interfaces can burst an unlimited amount of data

and transfers cannot be reordered.

2.3 Dynamic Partial Reconfiguration

Reconfiguring an FPGA is more complex than a simple transfer of the configuration

data from main memory to the configuration memory of the FPGA. Especially when

reconfiguring an FPGA partially, it needs to be ensured that the FPGA remains in

a consistent state and the not-reconfigured parts remain functional all the time. A
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partial bitstream contains all the information for the area that should be reconfigured,

e.g., the address in the configuration memory that corresponds to the area of the

FPGA where the design should be placed. The state of the FPGA is controlled by a

finite state machine (FSM) that is part of the reconfiguration port. This FSM executes

operations that are part of the bitstream besides the configuration data. Section 2.3.1

reports the information about the reconfiguration port and bitstreams that are openly

available for Xilinx FPGAs [55] while Section 2.3.2 presents an approach to decode

partial bitstreams and define a common structure that can be referred to when detailing

preemptive reconfiguration. Such a structure is not openly available for Xiling FPGAs,

hence it was part of this work to analyze the bitstream format in order to enable

reconfiguration preemption and determine at what points reconfiguration of a bitstream

can be preempted and resumed, as well as additional steps necessary to achieve this.

2.3.1 Xilinx Bitstreams and Reconfiguration Port

One of the contributions of this work, focuses on the reconfiguration port of Xilinx

FPGAs, called Internal Configuration Access Port (ICAP). The information contained in

the bitstreams for these FPGAs can be divided into two categories: operations executed

by the reconfiguration port FSM and the actual configuration data that is transferred

to the FPGA configuration memory. The smallest addressable segments of the con-

figuration memory are called frames, and all operations act upon one or more frames.

In Xilinx 7 Series FPGAs, each frame consists of 101 32-bit words [55]. The relevant

operations for preemptive reconfiguration that are executed by the reconfiguration

port FSM are summarized in the following.

Figure 2.3 shows the chronological sequence of the most relevant operations per-

formed by partial bitstreams (a more detailed description can be found in Section 2.3.2).
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Figure 2.3: Generic sequence of operations performed in a partial bitstream. White

blocks are operations common to all partial bitstreams; gray blocks are specific oper-

ations that depend both on the size and physical position of the reconfigurable area

inside the FPGA and on the used FPGA device. These gray blocks constitute the largest

part of the partial bitstream.

Partial bitstreams start with a Bus Width Auto-Detection operation that is used to auto-

matically detect the word width that is sent to the reconfiguration port (1, 2 or 4 bytes

are possible values). After that, the Synchronization Word initializes the reconfiguration

port to accept configuration data, followed by the ID Code Check, which ensures that

the bitstream target device matches the FPGA that is being reconfigured. The Shutdown

Operation safely shuts the area that is going to be reconfigured down and the Set Control

Register Operation configures the available reconfiguration features. Write Operations

transfer the actual configuration data, specifying the starting frame address and the

amount of words (multiples of whole frames) to write.

After all configuration data has been loaded into the FPGA configuration memory,

a Reset Operation is performed to initialize the logic inside the reconfigured region.

Partial bitstreams end with a Startup Operation, where the device activates I/Os and

the logic belonging to the reconfigured area, and a Desynchronization Operation that

de-synchronizes the reconfiguration port (inverse to the Synchronization Word). After

de-synchronization, the reconfiguration port ignores any following data on its inputs

until the next synchronization.

Two additional operations are used in partial bitstreams:
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• No-Operation. Decoded by the state machine without producing any actions. Since

each operation is executed by the reconfiguration port FSM, each operation has a

defined latency. This operation is used, when required, to introduce clock-cycles

delays in order to wait for the completion of the running operation.

• Null Operation. This is a write operation that writes zeros to a specific FPGA

register. Some operation as the Shutdown Operation and the Startup Operation need

to be activated after being issued to the reconfiguration port FSM. The activation

is done by a Null operation.

Each operation can be sent to the reconfiguration port in packets of two possible

formats: ‘Type 1’ or ‘Type 2’. Type 1 packets are used when small amount of data

words (to be read or written) are required by the operation. Type 2 packets are used to

write long segments of data into the FPGA configuration memory. The address within

the configuration memory needs to be supplied by a preceding Type 1 packet [55].

Header 

Type
Opcode Register Address Reserved Word Count

[31:29] [28:27] [10:0][12:11][26:13]

Header 

Type
Opcode Word Count

[31:29] [28:27] [26:0]

Packet Type 1 Packet Type 2

Figure 2.4: The FPGA bitstream consists of two packet types: Type 1 and Type 2. The

Type 1 packet is used for register reads and writes; the Type 2 packet, which must

follow a Type 1 packet, is used to write long blocks. No address is presented here

because it uses the previous Type 1 packet address.

As Figure 2.4 shows, both packet types have a Word Count field that contains the

exact number of data words following the actual operation. It instructs the reconfigura-

tion port FSM to directly write that amount of words to the configuration registers or

memory instead of decoding them.
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Two FPGA-internal registers are central for the purpose of preemptive reconfigura-

tion:

• Frame Address Register (FAR). It contains the address of the next frame in config-

uration memory to be written.

• Frame Data Input Register (FDRI). It contains the number of data frames that

have to be written to the FPGA configuration memory, starting from the frame

address specified by the FAR register.

These registers are the reconfiguration state that needs to be restored when a reconfigu-

ration is resumed.

The information summarized in this section has been gathered from openly-available

Xilinx documentation [55], while the information in the following section were gathered

by manually decoding partial and full bitstreams.

2.3.2 Decoding Partial Bitstreams

As mentioned in Section 2.3, there is no openly-documented structure of partial

bitstreams provided by Xilinx. Such a structure is required for preemptive partial

reconfiguration to determine points in the bitstream at which reconfiguration can safely

be preempted and resumed. Therefore, a general structure for partial bitstreams is

defined in the following, based on information gathered from decoding numerous

bitstreams. There are two types of bitstreams that have been utilized to obtain the

required information: standard bitstreams and debug bitstreams. Standard bitstreams

configure multiple frames after a single write to the FAR and the FDRI registers, which

increment automatically at the end of each frame. Debug bitstreams configure each

frame individually, writing the FAR and the FDRI after each frame, and thus providing

information about FPGA-specific configuration memory addressing.
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With information gathered by decoding both bitstream types, it has been possible to

group operations in partial bitstreams into sequences that fulfill specific purposes. Each

operation sequence can optionally contain configuration data organized in data chunks.

Moreover, sequences in the bitstream have been grouped into sections (consisting of one

or more sequences). Configuration data within a sequence of operations contains the

description of the hardware that will be reconfigured inside the pre-defined reconfig-

urable area, called reconfigurable slot, inside the FPGA. The resulting general structure

of sections for partial bitstreams in Xilinx 7 series FPGA is shown in Figure 2.5.
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Figure 2.5: Structure of a partial bitstream. The left hand side shows a partial bitstream

where three main sections are identified: Common Header, Reconfigurable Slot Data

Section, and Common Trailer. Darker sections are common to all partial bitstreams,

while the Configuration Data section depends on the area that is reconfigured. The

right hand side shows the structure of the Reconfigurable Slot Data Section.
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A partial bitstream can be structured into three main sections: Common Header,

Reconfigurable Slot Data Section, and Common Trailer.

Common Header This first section is common to all partial bitstreams targeting the

same FPGA and it is the only device-specific section. Its main function is to synchronize

the reconfiguration port and prepare the device to receive the bitstream. It consists of

the following four sequences: Synchronization Header, Write Initialization followed by

its data chunk (which contains the data used to initialize special configurable blocks

inside the FPGA), Shutdown and Set Control Register. These sequences are made of

operations that initialize the reconfiguration port to receive data (Synchronization

Word), set its bus width (Bus Width Auto-Detection), and perform the ID code check

(ID Code Check). Furthermore, during the Write Initialization sequence, an FPGA-

specific number of frames is sent to the configuration memory to configure particular

resources called CFG CLB used to define which part of the FPGA itself will be reset or

reconfigured [56]. This section ends with a Shutdown sequence, that safely disables

the area that is going to be reconfigured, and a Set Control Register sequence which

configures the FPGA device [55].

Reconfigurable Slot Data Section This section of the bitstream depends on the slot

that is reconfigured. It contains the slot’s configuration data which describe the user-

logic that will be written to the FPGA configuration memory. Configuration data is

divided into an even number of data chunks consisting of numerous frames to be

written into the configuration memory.

Common Trailer The last section is common to all partial bitstreams targeting the

same FPGA. The function of this section is to reset the programmed logic and to de-
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synchronize the reconfiguration port. Four main sequences can be identified: Reset,

Clear Control Register, Startup and De-Synchronization Trailer. These sequences consist

of operations used to initialize and activate the reconfigured logic and safely de-

synchronize the reconfiguration port.

As explained in Section 2.3, partial bitstreams contain information for the area to

be reconfigured and operations that control the reconfiguration FSM. Therefore, to

enable preemptable reconfiguration, the knowledge of partial bitstream structures is

essential, because a reconfiguration can be aborted at any time but can only be resumed

from specific points in the bitstream. Section 4.1.1 explains which are the point in the

bitstream where reconfigurations can be safely resumed.

This chapter presented all basic information necessary to fully understand this

thesis. The following chapter explains the problems that have been considered as

motivations of this work and the contribution to solve those problems.
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Chapter 3

Motivations and Contributions

When exploiting FPGAs with Dynamic Partial Reconfiguration in real-time embedded

systems, four main issues arise:

• provide worst-case response time bounds of computations consisting of software

tasks and hardware accelerated functions;

• provide a method to avoid scheduling problems due to the use of a single, non-

preemptive reconfiguration port;

• protect the system from malicious hardware accelerators that may possibly dis-

rupt the whole application;

• enhance the bus predictability in order to provide more precise worst-case re-

sponse time bounds.

Although several works have been done to analyze the timing behavior of real-time

applications using FPGAs, most of them did not consider Dynamic Partial Reconfigura-

tion capabilities at a job level. Only the work by Biondi et Al. [6] addresses the problem
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of providing worst-case response time bounds and proposes a new computing frame-

work for enabling a timing analysis of real-time activities that make use of hardware

accelerators developed through programmable FPGAs with Dynamic Partial Recon-

figuration capabilities. They use the developed framework to derive a response-time

analysis and verify the schedulability of a real-time task set under given constraints

and assumptions. Although the analysis is based on a generic model, the proposed

framework has been conceived to account for several real-world constraints present on

today’s platforms and has been practically validated on a real FPGA platform, showing

that it can actually be supported by state-of-the-art technologies.

Furthermore, as explained in Chapter 1, Dynamic Partial Reconfiguration enables

modifying parts of the logic configured on the FPGA while the remaining logic remains

functional and it uses a single dedicated and non-preemptive reconfiguration port to

write configuration data into the FPGA’s configuration memory. Therefore, only one

reconfiguration at a time can be performed thus in a multi-tasking system where

multiple tasks can request reconfigurations, the reconfiguration port is a contended

resource.

Eventually, as hardware accelerators aim at unburdening the software side from

compute-intensive tasks, there is the need to make hardware and software communicate

in a fast, safe and reliable way.

Therefore, the purpose of this thesis is to provide the tools to make FPGAs integra-

tion in real-time systems safer, avoiding malicious hardware accelerators to compro-

mise the the whole application, more predictable, allowing for a more precise analysis

of worst-case execution bounds, and more performing exploiting Dynamic Partial

Reconfiguration and enabling reconfiguration preemptions.
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3.1 Scheduling Problems

When a task issues a reconfiguration request (in this thesis is considered the model

used and detailed in [6]), it self-suspends to wait for the reconfiguration to be completed,

allowing the other tasks to execute on the CPU. Consider, for instance, a single-core

system running two tasks, τ1 and τ2, with τ1 having higher priority than τ2. The

following three approaches can be adopted for managing reconfiguration requests:

a) Configure-to-completion: an active reconfiguration can not be preempted or

aborted once started, but occupies the reconfiguration port until completed. This

case is shown in Figure 3.1a, where τ2 starts executing and takes control over the

reconfiguration port. When τ1 starts executing and requests a reconfiguration,

it must wait for τ2 to complete its reconfiguration, i.e., tasks are not executed

according to their priority order (priority inversion).

b) Abort: the reconfiguration process can not be suspended and resumed, but

it can be aborted. Every time a reconfiguration was aborted, it needs to be

restarted from the beginning. While this policy avoids priority inversion, it can

lead to starvation of τ2, as shown in Figure 3.1b. τ2 starts executing and takes

control over the reconfiguration port, but its reconfiguration is aborted once τ1

requests a reconfiguration. When higher-priority reconfiguration requests abort

τ2’s reconfiguration frequently, then τ2 suffers from starvation.

c) Preemptive reconfiguration: the reconfiguration requested by a task can be pre-

empted in favor of another higher-priority reconfiguration. When the higher-

priority reconfiguration is completed, the suspended reconfiguration is resumed

from the last valid point (where it is safe to resume the reconfiguration) already

passed at the time it was suspended. As shown in Figure 3.1c, τ2 starts executing
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HW Reconfig.

HW Execution

Hardware 
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(a) Configure-to-completion leads to priority inver-

sion: When an active reconfiguration can not be

stopped, then τ1 has to wait for τ2 to complete its

reconfiguration even if τ1 has a higher priority.

Reconfig.

Interface 60% 100%

τ2 Starves!

100%40% ...
Restart τ2 Reconfig.

SW Execution Reconfig. Request

Task Start/StopSuspension

HW Reconfig.

Hardware 

Execution

HW Execution

τ1

τ2

(b) Abort leads to starvation: τ1 repeatedly re-

quests reconfigurations, aborting τ2’s reconfigura-

tion (that needs to be restarted from the beginning).

Reconfig.

Interface 60% 100% 100%+30% +10%

Resume τ2

SW Execution Reconfig. Request

Task Start/StopSuspension

HW Reconfig.

HW Execution

Hardware 

Execution

τ1

τ2

(c) Preemptive reconfiguration solves priority inversion and starvation: Lower-priority reconfigurations

can be preempted by a higher-priority task. The preempted reconfiguration can be resumed afterwards.

Figure 3.1: Multi-tasking systems can experience priority inversion and starvation

problems due to a non-preemptive shared resource. Those problems are solved in this

work for reconfigurations, by making the shared reconfiguration port preemptive.
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and takes control over the reconfiguration port, its reconfiguration is preempted

once τ1 requests a reconfiguration. Despite the frequent reconfigurations of τ1,

τ2 will complete its reconfiguration eventually, because the progress made by τ2

during reconfiguration is kept each time it is preempted.

More realistic scenarios involving multiple tasks and large and more complex hardware

accelerators (that require larger reconfiguration time) would lead to a more complex

contention of the reconfiguration port, increasing delays and making the problems of

priority inversion and starvation even more severe. To solve those problems, a pre-

emptive reconfiguration method has been developed and implemented (see Chapter 4).

Using the proposed approach, the reconfiguration delay for lower-priority tasks is

bounded, while higher-priority tasks do not experience priority inversion, thus allow-

ing the development of multi-priority and mixed-criticality systems that benefit from

runtime reconfiguration.

3.2 Safety and Predictability Challenges

As hardware accelerators aim at unburdening the software side from compute-

intensive tasks, there is the need to make hardware and software communicate in a

fast, safe and reliable way.

As showed in Figure 3.2, assume to have a system with two hardware accelerator

and a CPU, all connected to the system memory through a bus in a multi-master

configuration.

Accelerators can be software enabled and perform computations on CPU’s data.

One of the most simple and effective communication techniques relies on a shared mem-

ory approach: the software shares one or more memory buffers, with each hardware

accelerator, where both have full access. The CPU loads the hardware accelerator’s
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Figure 3.2: Multi-master configuration of a communication bus. Two hardware acceler-

ators and one CPU would exchange information through the main memory.

input data inside the shared buffer and sends to the accelerator the buffer size and

base address. Eventually, the CPU activates the accelerator which saves its output data

inside another shared buffer.

This approach allows a fast and straightforward communication between hardware

and software, but has some drawbacks:

• Memory Corruption: the hardware accelerator has full access to the CPU memory,

therefore a bugged/malicious hardware could perform illegal memory access

leading to memory contamination.

• Bus Choking: the hardware accelerator has no transactions limits, so that a bugged/

malicious accelerator could continuously perform read/write transactions to the

system memory preventing the system bus from accepting other transactions,

thus stalling the entire system.

These drawbacks may lead to performance reduction or, even worse, can make

a real-time application fail, jeopardizing the entire system. In particular, the Bus
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Chocking effect also prevents the possibility to find a precise worst-case bound of the

communication time. Furthermore, Memory Corruption and Bus Choking can not

be solved using software techniques because the hardware accelerator behaves as a

master on the bus and the software side does not have any control over the single bus

transaction it performs.

A possible non-optimal approach could integrate the protection logic to prevent

Memory Corruption and Bus Choking directly inside the reconfigurable hardware

accelerator. However, in partially reconfigurable FPGA designs, the reconfiguration

time of accelerators depends on the area that needs to be reconfigured: the bigger

the area, the higher the reconfiguration time. Therefore, integrating the protection

logic inside the accelerator would results in higher reconfiguration times and loss of

performance and does not guarantee that a malicious accelerator correctly integrates it

or keeps it enabled.

Eventually, as described in Section 2.1 the integration of FPGAs in real-time, embed-

ded systems not only improves the computational performances but allows to enhance

flexibility and power consumption. Having a partially reconfigurable FPGA allows to

schedule in time the FPGA area thus obtaining an FPGA with area virtually infinite.

Moreover, the use of reconfiguration preemption combined with safety mechanisms

and more bus predictability can enhance the overall flexibility and performance of the

system.

As benefits and drawbacks in having preemption have already been extensively

discussed by the real-time, this work aims at demonstrating the feasibility and verify

the performance of the designed hardware and software. Moreover, disadvantages

have been analyzed and specifically addressed by the real-time community since ever.
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However, those solutions could probably not be fully ported to the FPGA environment

but this analysis would require another thesis.

In particular, the novel contributions of this thesis can be summarized as follows:

• To the best of our knowledge, this work provides the first realization of a preemp-

tive FPGA reconfiguration.

• Using the proposed preemptive reconfiguration mechanism, the reconfiguration

delay is bounded analytically for low-priority tasks that are subject to preemp-

tions.

• A trade-off analysis is presented to balance the reconfiguration delay experienced

by the low-priority tasks and the maximum delay induced in high-priority tasks

when preempting an ongoing reconfiguration.

• To the best of our knowledge, this thesis presents the first implementation of a

dedicated hardware that provides memory protection and budgeting of the bus

bandwidth in systems exploiting FPGAs.

• Using the proposed hardware for memory protection and bus bandwidth’s bud-

geting, the bus predictability is enhanced and a fair scheduling of transactions

over it is guaranteed.

The following chapter presents the designed hardware and how the hardware/

software integration has been performed.
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Chapter 4

Hardware and Software Design

In order to successfully integrate FPGAs in real-time embedded systems and provide

performance, safety and predictability, it is necessary to design software-driven hard-

ware IPs to integrate in FPGAs or SoCs. A crucial step of the development of those

IPs is the hardware/software co-design, thus the meeting of system-level objectives

by exploiting the trade-offs between hardware and software in a system, through

their concurrent design. Hardware/software co-design implies hardware/software

partitioning, hence the process of deciding, for each subsystem, whether the required

functionality is more advantageously implemented in hardware or software. Its goal is

achieving a partition that satisfies the required performance within the overall system

requirements (i.e., size, weight, power, cost, etc.).

This chapter shows how hardware and software have been partitioned describing

the implementation of the needed hardware IPs and their software drivers.
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4.1 Preemptive Partial Reconfiguration

A main challenge in realizing a preemptive reconfiguration is to obtain valid re-

sumption points, each consisting of a resumption offset in the bitstream and its associated

Frame Address Register (FAR) and Frame Data Input Register (FDRI) (see Section 2.3.1)

from which a preempted reconfiguration can safely be resumed. This section describes

different types of resumption points and how they are obtained from a partial bitstream

and details how they are utilized at runtime to resume preempted reconfigurations.

4.1.1 Finding Valid Resumption Points

As detailed in Section 2.3, configuration data are transferred into the FPGA configu-

ration memory by data chunks that consist of numerous frames. A frame is the smallest

transferable amount of configuration data. It is possible to preempt, but not start or

resume, a reconfiguration in the middle of a frame. Furthermore, it would be unsafe

to resume a reconfiguration in the middle of an operation sequence that instructs the

reconfiguration port FSM to write FPGA-internal configuration registers, since the

registers that had been written before the preemption could have been changed by the

preempting configuration.

Depending on the offset where a reconfiguration is preempted, different procedures

are necessary to resume it afterwards. Therefore, three types of resumption points that

require different sequences of operations to resume a preempted reconfiguration are

defied:

1. Trivial resumption point: beginning of a bitstream.

2. Simple resumption point: the resumption offset points to the end of a data chunk

in the bitstream. In this case, reconfiguration can be resumed at the offset after
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sending the Synchronization Header sequence that is part of the Common Header

(see Section 2.3.2).

3. Per-frame resumption point: the resumption offset points to the end of a frame

within a data chunk. Resuming a reconfiguration from per-frame resumption

points requires determining the correct FAR and FDRI values as well as sending

the correct Synchronization Header and Write Initialization sequences based on

these values.

Figure 4.1 shows the placement of different resumption points within the partial

bitstream. Resumption points are fixed in the bitstream thus it is not possible to

modify their position by bitstream manipulation in order to improve the timing of the

reconfiguration resumption. In the following, it is detailed how all types of resumption

points can be found within a bitstream.
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Figure 4.1: Position of Simple resumption points and Per-Frame resumption points

inside a partial bitstream. A Per-Frame resumption point is fixed at the end of each

frame within a data chunk. The resumption point related to the last frame, is a Simple

resumption point.
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Simple Resumption Points This type of resumption point can be found inside a

partial bitstream by searching for FDRI operations that are part of write initialization

sequences as shown in Figure 4.2. When skipping the following configuration data

chunk using the word count of the operation (see Section 2.3.1), the resulting offset

points to a Simple resumption point.

READ 

One Bitstream Word

FDRI 

Operation?

End

of Bitstream?

READ WordCount 

of the FDRI operation

WRITE

Resumption Point

(Offset)

Yes

Yes

START
No

No

END

JUMP 

(WordCount+1) words

Figure 4.2: Flow-chart diagram to find Simple resumption points inside partial bit-

streams.

When a reconfiguration is preempted, it needs to be resumed at the previous

resumption point. Therefore, the amount of data between two resumption points

directly contributes to the additional delay for the preempted reconfiguration. To

guarantee a minimum progress for the preempted lower-priority task (in Section 5.1.2),

this overhead should be as low as possible. Simple resumption points impair the

performance of the system, because a great amount of progress can be lost for the

lower-priority tasks. The distance between Simple resumption points depends on the

size of the area that is reconfigured: in a minimum-sized slot on a Zynq 7z010 device

(800 LUTs), the average distance between Simple resumption points is 6640 words (ca.

25% of the bitstream) and the biggest is 11744 words (about 44% of the bitstream, i.e.,
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the worst case that needs to be considered in the analysis in Section 5.1.2). Therefore, a

more fine-granular distribution of resumption points in the bitstream is beneficial.

Per-Frame Resumption Points within the Slot Data Section The Slot Data section

is by far the biggest section of a partial bitstream (multiple ten thousands of words).

Therefore, precedence has been given on finding Per-Frame resumption points in that

section first (without considering the data chunk within the Common Header). In

standard bitstreams, the FAR is initialized in the write initialization sequence and then

incremented automatically by the reconfiguration port FSM after each frame, while

writing the data chunk. Searching for Per-Frame resumption points requires knowing

the FAR value increment after each frame, in order to determine the FAR value (FPGA-

internal configuration memory address) that corresponds to a certain resumption point

(offset within the bitstream). This information can be taken from debug bitstreams:

inside the Slot Data section (but not in the data chunk within the Common Header), a

FAR value increment of 0x01 (frame increment) is applied after each frame.

Figure 4.3 shows how to find Per-Frame resumption points. The first step is to find

the beginning of each data chunk (FDRI-write operation inside the Write Initialization

sequence) and its starting FAR value. Then, a resumption point can be found at every

frame of configuration data, associating its offset with the calculated FAR value and

an FDRI value. The correct FAR value for per-frame resumption points within the

slot data section is calculated by adding a frame increment for each frame to the FAR

starting value. The FDRI value is fixed to the number of words in a frame (101).

Using Per-Frame resumption points in addition to Simple resumption points can

reduce the distance between resumption points drastically. However, the worst-case

distance between resumption points (that needs to be considered for real-time analyses

in Section 5.1.2) is now determined by Data Chunk #0 within the Common Header. This
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Figure 4.3: Flow-chart diagram that shows how to find Per-Frame resumption points

inside the Slot Data section of a partial bitstream. The FAR increment in this section is

0x01.

data chunk requires additional steps to determine the FAR increments, as detailed in the

following. As mentioned in Section 2.3.2, the size of Data Chunk #0 is device-dependent

and grows proportionally with the size of the FPGA.

Per-Frame Resumption Points within the Common Header Searching for Per-Frame

resumption points inside Data Chunk #0 within the Common Header requires the

knowledge of its internal device-dependent structure. In contrast to all other data

chunks, Data Chunk #0 is divided into smaller sub-chunks and each sub-chunk has

starting and ending FAR values that are not observable in a standard bitstream. The

number of sub-chunks and their starting and ending FAR values depend on the tar-

geted FPGA only, but not on the resources and dimensions of the reconfigurable slot

that should be configured.

The structure, FAR values, and FAR increments of Data Chunk #0 can be obtained
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by analyzing a debug bitstream for the targeted device. As discussed in Section 2.3.2,

the debug bitstream loads each frame individually, writing the FAR and the FDRI value

after each frame. Therefore, the internal partitioning of Data Chunk #0 into several

sub-chunks can be inferred by inspecting the FAR values in the debug bitstream: a

discontinuity in FAR values identifies the beginning of a new sub-chunk. Within

the same sub-chunk, FAR values are contiguous. The first FAR write identifies the

beginning of the first sub-chunk and every FAR discontinuity provides the ending value

of the current sub-chunk and the starting value of the next sub-chunk. Figure 4.4 shows

the structure of Data Chunk #0 for a partial bitstream targeting the Xilinx Zynq-7010

FPGA.
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Write Initialization Sequence

Sub-Chunk #0.1 – Frame #1

Sub-Chunk #0.1 – Frame #2

FAR = 0x01001B80
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Write Initialization Sequence

Sub-Chunk #0.2 – Frame #1
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Sub-Chunk #0.2 – Frame #2
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Sub-Chunk #0.2 – Frame #56

Standard Bitstream Zynq-7z010

FAR = 0x01000080

FAR = 0x01400080
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FAR = 0x01001B80

FAR = 0x01401B80

Sub-Chunk #0.2 – Frame #57

Debug Bitstream Zynq-7z010

Synchronization Header

Write Initialization Sequence

Data Chunk #0

Shutdown Sequence

Set Ctrl Register Config.

Standard Bitstream

Common Header Section

Sub-Chunk 0.1

Sub-Chunk 0.2

Figure 4.4: Detailed structure of Data Chunk #0. The FAR increment is 0x80 (column

increment) and each sub-chunk has its starting and ending FAR value. Highlighted in

red the discontinuity of the FAR value between two different sub-chunks.

The process for finding Per-Frame resumption points in Data Chunk #0 is similar

to finding per-frame resumption points in the slot data section (see Section 4.1.1 and

Figure 4.3). However, the FAR increment after each frame is a column increment (0x80)

43



and not a single-frame increment (0x01). The information about the end of each sub-

chunk and the correct FAR values are read from the debug bitstream.

By introducing Per-Frame resumption points in Data Chunk #0, the maximum gap

between two resumption points can be reduced to a single frame (101 words), hence

at most the configuration progress of a single frame is lost when a reconfiguration is

preempted.

In the following, the software interface, the designed custom reconfiguration con-

troller, and the way they interact to realize preemptive reconfiguration under real-time

constraints by utilizing resumption points (as detailed in the previous section) are

described.

4.1.2 Software Interface for Preemptive Reconfiguration

Each task that wants to reconfigure a reconfigurable slot sends a request to the

reconfiguration driver, which provides a unified software interface for runtime recon-

figuration for all tasks. Then, the driver handles the reconfiguration request by sending

commands to the reconfiguration controller that translates these commands into signals

for the reconfiguration port, and initiates the transfer of configuration data from main

memory (or controller-internal SRAM) to the reconfiguration port. The purpose of the

reconfiguration controller is to alleviate the CPU from managing the reconfiguration

port and keeping track of ongoing reconfiguration requests. A reconfiguration request

to the driver specifies the requesting task priority, ID and bitstream’s memory address

(i.e., the address in memory where the bitstream has been stored). The task priority

is used by the driver to determine whether the request has priority over a running

reconfiguration (if any). The driver compares the task priority with the priority of the

current reconfiguration (stored in a hardware register of the reconfiguration controller)
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to decide whether to preempt or not. If the requesting task has the same priority of

the current reconfiguration, the driver sends the reconfiguration request only if the

requested slot is free. In case the requested slot is busy, the driver returns an error to

the user task which can decide to proceed in software or ask again for hardware accel-

eration. The task ID from the reconfiguration request is used to resume the respective

task when the reconfiguration has finished. As soon as a task sends a reconfiguration

request, it self-suspends. Additional information can be provided to execute the re-

configuration request, e.g., the reconfiguration controller can be configured to send an

interrupt to the CPU in case of a reconfiguration error.

Tasks are unaware of reconfiguration requests from other tasks. The driver trans-

lates reconfiguration requests into commands to the reconfiguration controller, while

possibly preempting and resuming reconfigurations such that the reconfiguration re-

quest with the highest priority is being processed at each point in time. This leads to

the following cases that the driver has to handle:

1. No ongoing reconfiguration. In case no reconfiguration is currently being performed,

the driver translates the reconfiguration request into commands that are sent to

the reconfiguration controller and then waits for a new request.

2. Ongoing reconfiguration. In case there is a reconfiguration currently being per-

formed, the driver compares the priority of the running reconfiguration request

and the new reconfiguration request to determine whether to abort the current

reconfiguration to start processing the new request, or to enqueue the new re-

quest after the running reconfiguration request. When a task of higher priority

requests a reconfiguration while a task of lower priority currently occupies the

reconfiguration port, the lower-priority reconfiguration is preempted. To preempt

a reconfiguration, the driver aborts the current reconfiguration and determines
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how far the lower-priority reconfiguration has proceeded (as an offset in the

bitstream). After that, the resumption point for the lower-priority reconfiguration

request that is closest to the determined offset (and that was already passed dur-

ing reconfiguration) is searched in a list of all resumption points for the respective

bitstream. Then, the higher-priority request is enqueued. Afterwards, depending

on the resumption point, the correct synchronization (see Section 4.1.1) and the

lower-priority reconfiguration are enqueued to proceed from the resumption

point. Once the higher-priority reconfiguration has finished, the reconfiguration

controller automatically resumes the lower-priority reconfiguration (assuming

no other higher-priority task requests a reconfiguration), as it is detailed in the

following section.

4.1.3 Preemptive Reconfiguration Controller

The reconfiguration driver handles the tasks’ reconfiguration requests by translat-

ing them into commands that are sent to the custom reconfiguration controller over

the system bus (ARM AMBA AXI on the Xilinx Zynq devices). The reconfiguration

controller processes commands internally using an FSM, based on the command-based

reconfiguration queue (CoRQ) [57] that guarantees a fixed latency for each command,

and was extended by commands that enable the reconfiguration preemption. The

only command which does not guarantee a fixed latency is the one that triggers the

bitstream transfer from the main memory which is connected on a multi-master bus.

The goal of the designed reconfiguration controller is to provide a high-level interface

to perform preemptive reconfigurations for tasks with different priorities.

Figure 4.5 shows an overview of the reconfiguration controller. It communicates

to the system using AXI interfaces: one master interface is used by the controller to
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Figure 4.5: Detailed block diagram of the custom reconfiguration controller. Darker

blocks are Xilinx generated IP (AXI interface, FIFO and Width Converter) or Xilinx

hard IP (ICAP and DDR).
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fetch bitstream data from main memory and one slave interface is used to connect the

controller to an AXI bus from which the controller can accept commands, e.g., sent

by the ARM CPU on Zynq devices. In particular, the AXI slave interface allows to

control the input demux to write into a single queue, while the internal logic controls

the output mux in order to let the FSM process commands from the highest priority,

non-empty queue. It integrates the Internal Configuration Access Port (ICAP) as the

reconfiguration port on Xilinx devices.

In addition to the FSM, the reconfiguration controller provides a configurable

number of FIFO queues. For each task priority supported by the system, two queues

are instantiated: (i) a command queue that accepts any FSM commands from tasks of the

respective priority and (ii) a resume queue that stores only FSM commands to resume

reconfigurations from resumption points (see Section 4.1.1). The priority of the queues

is strictly ordered: First by the task priorities, and within a single task priority the

resume queue has a higher priority than the command queue (i.e., there are two queue

priorities for each task priority). In other words, preempted reconfigurations have a

higher priority than the following reconfiguration requests from tasks of the same task

priority. The reconfiguration controller is able to manage 2 billion couples of queues

(32-bit addressing) which reflects on the software side with an equal number of priority

levels.

The FSM is the core of the reconfiguration controller and it fetches, decodes and

executes commands from the highest-priority non-empty queue (either command or

resume queue). Based on the commands from the queue, the FSM controls the FPGA

reconfiguration port. The FSM processes 32-bit commands of three different formats as

shown in Figure 4.6. Similar to instructions in a CPU, these formats enable commands

with different amounts of data and optionally bit fields for settings.

Commands are either executed immediately or enqueued into one of the internal
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Figure 4.6: Commands for the reconfiguration controller can have three different

formats depending on the amount of data and settings required by commands.

FIFO queues (denoted as immediate or queueable commands). Immediate commands are

used to control the FSM itself (e.g., pause/resume processing enqueued commands)

and abort a running reconfiguration. Queueable commands relieve the CPU from

managing reconfigurations, i.e., they configure bitstreams (from internal or external

memory) and notify the CPU once reconfiguration have finished. The commands that

are utilized for preemptive reconfiguration are listed in the following and Table 4.1

shows their latencies (in clock cycles).

• setBaseAddress: Commands can have, at most, 27-bit for data, but some of them

require 32-bit addresses, i.e., configureBitstream, setFAR and setFDRI (detailed

below). setBaseAddress is used to set an offset that is combined with the address

bits supplied by other commands to obtain 32-bit addresses.

• configureBitstreamInt / configureBitstreamExt: Starts transfer of the bit-

stream to the reconfiguration port from the memory address specified by 20 bits

inside the command combined with 12 bit set prior via the setBaseAddress com-

mand. It is possible to decide the storage source of the bitstream: it can be fetched

from the controller-internal memory, which guarantees a fixed bandwidth, or
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from the main memory.

• abortReconfiguration: This command will abort the ongoing reconfiguration,

stopping the data transfer and resetting the reconfiguration port. A flag allows to

choose whether processing of further commands should be paused afterwards or

not.

• setFAR: Updates an operation sequence with a new FAR value that reflects a pre-

viously selected resumption point. The sequence to update is stored in the recon-

figuration controller and sent to the reconfiguration port to resume a preempted

reconfiguration (Synchronization Header and a Write Initialization sequence, see

Section 2.3.2) This command must be preceded by setBaseAddress.

• setFDRI: Similar to setFAR, this command updates the operation sequence that is

sent to the reconfiguration port to resume a preempted reconfiguration with a

new FDRI value. This command must be preceded by setBaseAddress.

• sendSyncronization: This command sends the operation sequence to resume

a preempted reconfiguration. A flag is used to determine whether the whole

sequence should be sent (for resuming per-frame resumption points, see Sec-

tion 4.1.1) or the Synchronization Header only (for resuming simple resumption

points). Before issuing this command, FAR and FDRI must have been set using

setFAR and setFDRI.

• resumeFSM: If the FSM was paused (e.g., by abortReconfiguration), this com-

mand resumes it.

The reconfiguration controller records the state of an ongoing reconfiguration. Bitstream

Address and Word Counter are registers that are used to store the base address of the
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Table 4.1: Reconfiguration Controller Commands.

Command Immediate/Queueable Latency

configureBitstreamExt Qu —

configureBitstreamInt Qu 9 + dB/4e

setBaseAddress Qu 3

abortReconfiguration Im 7

setFAR Qu 3

setFDRI Qu 3

sendSyncronization Qu 470

resumeFSM Im 3

B - size of bitstream [byte]

currently reconfigured bitstream and determine the offset of the currently transferred

bitstream word. These two values are used during preemption to determine the

resumption point. In particular, the bitstream base address is used as a bitstream ID,

to target the right set of resumption points; while the word counter value is used as

an offset and compared with all pre-calculated resumption offsets to find the closest

accomplished resumption point (details in Section 4.1.4).

As explained in Chapter 2, resuming a reconfiguration means resume the writing to

the portion of the FPGA configuration memory associated with a specific reconfigurable

slot and does not implies the run-time modification of the bitstream. Therefore, each

time a reconfiguration should be resumed from a specific resumption point, the recon-

figuration port needs to be synchronized first using the Synchronization Header (and

possibly the Write Initialization). The reconfiguration controller includes a Sync-Write

ROM, a memory that contains the Synchronization Header and Write Initialization
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sequences. Two words inside the Write Initialization sequence are programmable: the

FAR and FDRI values that define a specific resumption point (set using setFAR and set-

FDRI). Depending on the type of resumption point, only the Synchronization Header

(simple resumption points) or both Synchronization Header and Write Initialization

sequences (per-frame resumption points) are sent to the reconfiguration interface.

Table 4.2 shows the register map of the reconfiguration controller and the descrip-

tion of each register follows.

Register Offset Register Name Size Read/Write

0x00 Status Register 64bit R

0x08 Word Counter 32bit R

0x0C Bitstream Address 32bit R

0x10 Command’s Length Register 32bit R

0x14 Time-stamp Register 64bit R

0x1C Input Demux Control Register 32bit R/W

0x20 Command Register 32bit R/W

0x24 Current/Last-ran Command Register 32bit R

Table 4.2: Memory mapping of all registers accessible by the AXI interface of the

reconfiguration controller.

Status Register This 64-bit register records the state of each components inside the

reconfiguration controller. In particular it is possible to monitor the state of the ICAP

port and check whether it is busy or free. Moreover, the status register records the id of

the currently active queue (which reflects the priority supported by the system) and

saves its status. Finally, it reports the state of the reconfiguration controller’s FSM.
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Word Counter During reconfigurations, it holds the number of bitstream’s words

already sent to the ICAP.

Bitstream Address This register stores the memory address where the currently

reconfiguring is located. This address helps to uniquely identify the bitstream.

Command’s Length Register Duration, in terms of clock cycles, of the last-ran com-

mand. This register has profiling and characterization purposes only.

Time-stamp Register The reconfiguration controller contains a 64-bit, free-running

timer. Each time a command is executed by the FSM, this register is updated with the

timer’s value. This register has profiling and characterization purposes only.

Input Demux Control Register This register allows to control the input demux thus

addressing a specific queue to write to.

Command Register After the Input Demux Control Register has been configured,

the right queue has been chosen and it is possible to write a command in the Command

Register in order to fill the selected queue.

Current/Last-ran Command Register Every time a new command is executed by

the state machine, the same command is loaded inside this register. As this register

is accessible by the software side, the software driver can always be aware of the

currently running command. This feature is particularly useful when checking if a

reconfiguration is currently being performed.
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Figure 4.7: Data structure for two bitstreams with three resumption points each. The

Bitstream Information Array is indexed using the Bitstream Address value read from the

hardware, while the Word Counter value is used to identify the correct resumption

point within the Resumption Point Array. The Synch Type field specifies the type of

resumption point.
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4.1.4 Hardware/Software Integration

To trigger a reconfiguration, the reconfiguration driver enqueues a setBaseAddress

and a configureBitstream command into the command queue that is determined

by the task priority. As soon as one of the queues signals that it is non-empty, the

reconfiguration controller FSM starts fetching and executing its commands.

To preempt an ongoing reconfiguration, the reconfiguration driver sends an (imme-

diate) abortReconfiguration command and reads the state of the aborted reconfigura-

tion to find the correct resumption point. In particular, Word Counter and Bitstream

Address values are read from the hardware controller. Since the application could

have multiple reconfigurable slots and partial bitstreams, a method to address the

respective set of resumption points and the specific resumption point of the preempted

reconfiguration is required. Figure 4.7 shows the data structure used to select the

correct resumption point. The address from which the bitstream was fetched in the

preempted reconfiguration (pointing to main memory or controller-internal memory)

is used as an identification method to target the set of resumption points related to

the preempted reconfiguration. Moreover, the Word Counter value is used as an offset

and compared with all resumption offsets within each resumption point, in order to

find the nearest and already passed one. Finally, resuming a reconfiguration requires

different commands, depending on the type of resumption point (Figure 4.8):

• Trivial resumption points: In this case, the reconfiguration driver enqueues a

setBaseAddress and a configureBitstream command. There is no need for the

reconfiguration controller to send a Synchronization Header sequence, as the

reconfiguration simply resumes from the beginning of the bitstream.

• Simple resumption points: The reconfiguration driver enqueues a sendSyncro-

nization command specifying to send a Synchronization Header sequence only,
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as this type of resumption points already contain a Write Initialization sequence.

Then, a setBaseAddress and a configureBitstream command are enqueued to

resume the reconfiguration.

• Per-Frame resumption points: In addition to the Synchronization Header se-

quence, this type of resumption point needs a Write Initialization sequence. The

reconfiguration driver enqueues a setFAR and a setFDRI command (both have

to be preceded by a setBaseAddress) to set the FAR and FDRI value taken from

the selected resumption point. Then a sendSyncronization command (that spec-

ifies to send both Synchronization Header and Write Initialization sequence), a

setBaseAddress and a configureBitstream command are enqueued.

setBaseAddress

ConfigureBitstream
sendSynchronization

(Synch Header Only)

setBaseAddress

ConfigureBitstream

sendSynchronization

(Synch + Write)

setBaseAddress

ConfigureBitstream

setBaseAddress

setFAR

setBaseAddress

setFDRI

Resume Queue Resume Queue Resume Queue

Trivial resumption 

points

Simple resumption 

points

Per-Frame resumption 

points

T
im

e

Figure 4.8: Command sequence to resume a reconfiguration from Trivial, Simple and

Per-Frame resumption points.

4.2 Memory Protection and Budgeting Unit

As introduced in Chapter 1, partial reconfiugration allows the user to reconfigure

a portion of the FPGA at runtime, while the remainder of the device continues to
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operate. Therefore, it is possible to combine partial reconfiguration with hardware

acceleration, reconfiguring portions of the FPGA with custom hardware accelerators

while the application is running.

Those accelerators need to communicate with the CPU in order to exchange data and

information and this communication is usually performed through a shared-memory

approach. As already detailed in Section 3.2, the shared memory approach has some

drawbacks like Memory Corruption and Bus Chocking.

To protect the main memory from illegal transactions and preventing hardware

accelerators from choking the system bus, approaches which are usually exploited by

software systems to solve similar problems have been used. In particular, a Memory

Protection and Budgeting Unit (MPBU) has been developed in order to solves Memory

Corruption and Bus Chocking problems, allowing to set a precise bandwidth for each

hadrware module that needs to access the main memory. The developed MPBU does

not affect the communication performance and the reconfiguration time.

In particular, this section describes the implementation of a custom, user-programmable

MPBU to be placed between the hardware accelerator and the main memory as Fig-

ure 4.9 shows.

MemoryMPBU
Hw

Accelerator

Figure 4.9: Memory Protection and Budgeting Unit placement. The MPBU must be

placed between the hardware accelerator and the memory as it controls the data traffic

to the memory.
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4.2.1 Hardware Design and Functionalities

The MPBU provides memory protection and budgeting control for AXI4 and AXI4-

Lite peripheral. As Figure 4.10 shows, the MPBU has one AXI master, one AXI slave

interface and a custom configuration interface. The AXI slave port connects to the

external master and is internally connected, through a decoupler, to the AXI master

port. Therefore it is possible to snoop the state of all bus’ signals and act consequently.

MPBU

S_AXI M_AXI

Config

From Hw 

Accelerator

To Main 

Memory

Configuration

Parameters

Figure 4.10: MPBU interface organization. Each MPBU has one AXI master and one

AXI slave interface and a custom configuration interface.

The custom configuration interface allows to enable and disable the MPBU and

send it in configuration mode where it is possible to set transaction budget, budget

refreshing period and memory limits. Moreover, it allows to enable the MPBU or send

it in configuration mode, thus allowing to configure the MPBU. At compiling time

it is possible to define the number of memory buffers that need to be protected and,

through the configuration interface, set the limits of each buffer individually.

As the configuration interface is not compliant with the AXI standard, another IP

called MPBU Controller has been designed to act as a bridge and allowing to configure

the MPBU through the AXI bus.

It has been preferred to separate the MPBU from its controller in order to overcome
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a limit of the development tool which restricts the maximum number of AXI interfaces,

for one each custom IP, to 16. Therefore, this approach allows to connect up to 16

different MPBUs to a single MPBU controller. If more MPBUs are necessary, it is

possible to use multiple MPBU Controllers.

The MPBU has to be placed between the master (e.g., a custom hardware accelerator)

and the slave (e.g. the system memory) and acts as a gate, decoupling the master from

the slave if necessary.

In particular, as the master is allowed to make a number of transactions equal to its

transaction budget, if it expires its quota or in case of an illegal master transaction, the

MPBU gates all the valid and ready signals of the master’s bus. Therefore, the master is

decoupled from the slave and no transactions can occur until the transaction budget

has been refreshed or the illegal memory transaction has been removed from the master

bus.

In order to be more general, it is assumed that an AXI4-Lite read/write can be seen

as an AXI4 read/write burst of one data word. In the following will be shown the

implemented solutions used to achieve those functionalities.

• Memory Protection. It consists of an address check. The MPBU constantly compares

the actual value on the Read/Write Address Channel with two user-configurable

limits: base address and maximum size which respectively represent the starting

memory address of the shared buffer and its size. In particular, checks if the

master’s transaction fits into the shared buffer limits and, in case an illegal

transaction is detected, it gates the communication and sends an interrupt request.

The MPBU can safely handle eigth different shared buffers.

• Budgeting Control. The MPBU features a transaction counter which counts each

read/write request and decouples the master from the slave if the first one
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Figure 4.11: Internal block diagram of the MPBU. Black lines on top of the represent

the AXI bus and its address and data channels. The communication which happens

through the bus is gated according to the output of transaction counter, write address

comparator and read address comparator.
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exceeds its transaction budget. The budget will be automatically replaced after a

user-configurable budget period.

Table 4.3 shows the register map of the MPBU Controller and the description of

each register follows.

Register Offset Register Name Size Read/Write

0x00 Control Register 32bit R/W

0x08 Budget Register 32bit R/W

0x0C Budget Period Register 32bit R/W

0x10 Priority Register 32bit R/W

0x14 Memory Buffer Base Address Register 32bit R/W

0x18 Memory Buffer Offset Register 32bit R/W

0x1C Memory Buffer Mux Register 32bit R/W

0x28 Status Register 32bit R

0x2C→ 0x68 Budget Counter Register 32bit R

Table 4.3: Memory mapping of all registers accessible by the AXI interface of the MPBU

Controller.

Control Register The higher 16 bits of this register, control the possibility to enable

or disable one specific MPBU. For example, writing 0x00010000 to this register enables

the MPBU connected to channel 0. Lower 16 bits are used to put the related MPBU

in configuration mode. Note that the MPBU will accept configuration data only if its

configuration bit is set and its enable bit is cleared.

Budget Register When the MPBU is in configuration mode it will take the value held

by this register as transaction budget.
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Budget Period Register When the MPBU is in configuration mode it will take the

value held by this register as budget refresh period (in FPGA clock cycles).

Priority Register When the MPBU is in configuration mode it will take the value

held by this register as its priority level over the AXI bus.

Memory Buffer Base Address Register When the MPBU is in configuration mode

it will take the value held by this register as the base address of the memory buffer

selected by the Memory Buffer Mux Register. Therefore, it is possible to set a different

base address for each memory buffer that will be shared between the CPU and the

FPGA.

Memory Buffer Offset Register When the MPBU is in configuration mode it will

take the value held by this register as the size of the memory buffer selected by the

Memory Buffer Mux Register. Therefore, it is possible to set a different size for each

memory buffer that will be shared between the CPU and the FPGA.

Memory Buffer Mux Register When the MPBU is in configuration mode the value

held by this register will be used by the MPBU to associate the values written in the

Memory Buffer Offset Register and Memory Buffer Base Address Register with the

correct memory buffer.

Status Register The higher 16 bits of this register, hold the decoupling state of each

MPBU. Each bit is related to one specific MPBU connected to the MPBU Controller. The

lower 16 bits reflect the interrupt request status of each MPBU. If one MPBU detects an

illegal memory transaction, the relative flag in the status register will be set and will

stay set until the illegal transaction is removed from the bus.
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Budget Counter Register There are 16 Budget Counter Register, one for each MPBU

that can be connected to the controller. These registers hold the number of transactions

done by the master. The maximum value that can be found in these registers equals

the transaction budget.

4.2.2 Software Interface

In order to use the hardware from the Zynq’s ARM cores (or another AXI-compatible

processor), a low-level software layer has been designed. This software layer drives

the MPBU Controller which consequently passes configuration information to all the

MPBUs.

Through the control register of the MPBU Controller, each MPBU can be individ-

ually configured and enabled. In particular, the MPBU that needs to be reconfigured

must be disabled (clearing the corresponding bit in the Control Register) otherwise

the sent configuration will be discarded. When one MPBU is disabled it behaves like a

pass-through, without affecting the communication.

The following code snippet shows a simple example to configure and enable the

MPBU:

1 /∗

2 ∗ MPBU C o n t r o l l e r I n i t i a l i z a t i o n .

3 ∗

4 ∗ This funct ion i n i t i a l i z e s the MPBU C o n t r o l l e r and

5 ∗ i t s software s t r u c t u r e .

6 ∗/

7 M p b u C t r l I n i t i a l i z e (&MpbuCtrl , MPBU CONTROLLER ID) ;

8

9 /∗

10 ∗ S l o t i n i t i a l i z a t i o n .
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11 ∗

12 ∗ I n i t i a l i z a t i o n of each s p e c i f i c MPBU with a l l the required

13 ∗ c o n f i g u r a t i o n s . This f u n c t i o n s se t s , f o r a s p e c i f i c MPBU

14 ∗ i d e n t i f i e d by MPBUId[ i ] , the budget quota and r e f r e s h i n g

15 ∗ period , the MPBU p r i o r i t y and the a s s o c i a t e d memory b u f f e r .

16 ∗/

17 f o r ( i = 0 ; i < NUMBER OF MPBU DEVICES ; i ++)

18 {

19 MpbuCtrl ConfigSlot (&MpbuCtrl , MPBUId[ i ] ,

20 BudgetQuota [ i ] ,

21 BudgetPeriod [ i ] ,

22 MPBUPriority [ i ] ,

23 B u f f e r O f f s e t [ i ] ,

24 BufferAddress [ i ] ) ;

25 }

26

27 /∗

28 ∗ S l o t enable .

29 ∗

30 ∗ After conf igurat ion , the MPBU can be enabled .

31 ∗/

32 MpbuCtrl EnableAllSlots (&MpbuCtrl ) ;

Listing 4.1: Example code that uses the low-level driver to configure and enable the

MPBUs.

These sections complete the description of how preemptive reconfiguration, mem-

ory protection and bus budgeting were realized. In the following chapter, preemptive

partial reconfiguration and bus budgeting have been analyzed under real-time con-

straints.
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Chapter 5

Analysis

5.1 Worst-Case Latency Analysis of Preemptive Recon-

figuration

The realization of preemptive reconfiguration is based on CoRQ [57], a reconfigura-

tion controller that guarantees worst-case latency bounds on the commands it processes,

even on the reconfiguration itself when a memory bandwidth is guaranteed, e.g., when

using FPGA-internal SRAM. Commands that have been implemented for preempting

and resuming reconfigurations have guaranteed latencies, as listed in Table 4.1.

This allows to apply standard response time analysis techniques to determine the

finish time of real-time tasks [58] and preemptive reconfigurations under real-time

constraints. The focus of this chapter is to define worst-case bounds on the latency

overhead that a higher-priority task experiences, when preempting a lower-priority task

(WCEThp). Furthermore, it has been determined an upper bound on the reconfiguration

delay for lower-priority reconfiguration requests from the lower-priority task for a

given worst-case interval of reconfiguration preemptions (rdelaylp), and discuss under
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which circumstances preemption enables us to guarantee a minimum progress for these

reconfigurations.

5.1.1 Overhead for Preempting an Ongoing Reconfiguration

When a higher-priority task sends a reconfiguration request to the reconfiguration

driver, the driver needs to preempt the ongoing reconfiguration (if any, as detailed in

Section 4.1.4). Preemption entails operations performed by the driver itself (in software),

as well as commands that are sent to the reconfiguration controller. The first command

that is sent to the reconfiguration controller aborts the ongoing reconfiguration (while

keeping information about its progress) and suspends processing of further commands

(enqueued commands are kept in the queues). This way, operations performed by the

driver and commands sent to the reconfiguration controller to perform the preemption

are executed in sequence and therefore analyzed separately.

After abortReconfiguration, the driver determines the queue containing the com-

mands that were being processed before the abort (the highest-priority non-empty

queue) and then reads the last state of the aborted reconfiguration. Based on this state,

the correct resumption point for the preempted reconfiguration is determined using

binary search on the table of resumption points available for the respective bitstream.

The corresponding commands to resume from this resumption point are then enqueued

into the resume queue for the lower-priority task in the reconfiguration controller (see

Section 4.1.4). Afterwards, the configureBitstream command for the higher-priority

task is enqueued into its standard queue which it was empty before, otherwise it would

not be possible that the reconfiguration of a lower-priority task is preempted. Therefore,

the reconfiguration request of the higher-priority task is immediately processed, when

the driver finally resumes processing of commands by the reconfiguration controller
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FSM using resumeFSM. The reconfiguration driver has been implemented as a bare

metal binary (without task handling, a full-featured implementation based on FreeR-

TOS is evaluated in Chapter 6) to get an estimate on the worst-case execution time

(WCET) of the driver’s operations when preempting an ongoing reconfiguration. The

WCET estimate is obtained using the commercial WCET analyzer AbsInt aiT1, based

on an ARM Cortex R5F real-time CPU running at 600 MHz that is available in the

recent Xilinx Zynq UltraScale+ generation. While the presented approach is not tied

to a specific CPU, it is not possible to apply WCET analyzers to the ARM Cortex A9

that is available on the Xilinx Zynq-7000, because of its out-of-order pipeline. Eq. (5.1)

shows the obtained result for the operations that the driver performs in software in

WCET cycles (of the CPU).

WCEThp driver(Nrsp) = 18229 + blog2(Nrsp) + 1c · 233 (5.1)

Due to the binary search of the resumption point, the WCET depends on Nrsp (the num-

ber of resumption points that were determined statically), resulting in a “parametric”

WCET bound [59].

In the following, is analyzed the worst-case latency of the commands processed by

the reconfiguration controller to perform the preemption (as sent by the reconfiguration

driver). These are: abortReconfiguration (suspending processing further commands)

and resumeFSM (after enqueueing the higher-priority reconfiguration). Processing these

commands takes tabortReconfiguration = 7 and tresumeFSM = 3 cycles respectively on the

reconfigurable fabric [57]. Furthermore, the frequency factor between CPU and recon-

figurable fabric cfreq needs to be accounted for, i.e., the CPU runs at a frequency cfreq

times higher than the reconfiguration controller. Therefore, the WCET for processing

1https://www.absint.com/
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the commands for preemption in CPU cycles is:

WCEThp cmds = cfreq · (tabortReconfiguration + tresumeFSM) = cfreq · 10 (5.2)

In the presented case, the reconfiguration controller runs at 100 MHz, while the ARM

Cortex R5F runs at 600 MHz on the Xilinx Zynq UltraScale+, i.e., cfreq = 6. In total, the

following WCET in CPU cycles that the higher-priority task experiences as an overhead

for its reconfiguration requests, in case it needs to preempt an ongoing reconfiguration

from a lower-priority task, is obtained:

WCEThp(Nrsp) = WCEThp driver(Nrsp)+WCEThp cmds = 18289+ blog2(Nrsp)+ 1c · 233

(5.3)

This is the worst-case overhead that needs to be considered for reconfiguration requests

in response-time analyzes like presented in [6], when reconfiguration preemption

should be allowed. Figure 5.1 shows how the overhead grows, depending on the

number of resumption points available in the bitstream that is preempted. Note that

the overhead is guaranteed to remain below 21100 cycles when providing resumption

points for every second frame (every 202 words) for a bitstream that is smaller than

2.5 MiB (ca. the size of a full bitstream for the Xilinx Zynq-7010). This overhead

corresponds to ' 8% of the observed worst-case scheduling overhead in an ARM-based

Linux system with real-time extensions [60]. Even when reconfiguring 25 % of the

total resources of the Zynq-7010 at maximum reconfiguration bandwidth, the designed

preemption approach would increase the delay by only 1.75 % in the worst case.
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Figure 5.1: Worst-case execution time for preempting a reconfiguration

(WCEThp(Nrsp)), depending on the number of resumption points (Nrsp) available in

the bitstream that is preempted. E.g., a bitstream size of 338 KiB has been reported for

several image filter accelerators (each) on the Zynq-7010 in [6], resulting in Nrsp ≈ 430

with per-frame resumption points at every second frame.

5.1.2 Reconfiguration Delay of Preempted

Reconfigurations

This section focuses on providing an upper bound for the reconfiguration delay of

lower-priority reconfiguration requests from a lower-priority task under reconfigura-

tion preemptions (rdelaylp). Tasks in the lower priority level encounter preemptions

from higher priority levels only, therefore in the following is reasoned about preemp-

tions encountered by a single lower-priority task. Using configureBitstreamInt, the

reconfiguration controller sets up a memory transfer from FPGA-internal SRAM to the

reconfiguration port (taking exactly 9 cycles), and then transfers one word (4 byte) of

bitstream in each cycle (full utilization of the reconfiguration port). Reconfiguration

controller, reconfiguration port and the FPGA-internal SRAM can be clocked at up to
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100 MHz, resulting in a maximum reconfiguration bandwidth of 400 MB/s2. Given

a bitstream of size B in bytes, a reconfiguration without any preemptions takes ex-

actly rdelay(B) = 9 + dB/4e cycles on the reconfigurable fabric using the designed

reconfiguration controller (details in [57]).

To determine the worst-case reconfiguration delay under preemptions, it is neces-

sary to consider the number of preemptions that can occur during the reconfiguration.

Each preemption creates overhead that prolongs the reconfiguration delay, creating

the possibility for additional preemptions. To bound this effect, is applied an iterative

process from response time analysis [58] as follows. Assuming the minimum distance

between preemptions (due to reconfiguration requests from higher-priority tasks) is

tpreempt, the following recursive sequence has been obtained:

rdelayn+1
lp (B) = rdelay(B) +

⌈
rdelayn

lp(B)

tpreempt

⌉
︸ ︷︷ ︸

number of preemptions

· (trsp + tsync)︸ ︷︷ ︸
overhead of being preempted

, (5.4)

The process starts with rdelay0
lp(B) = rdelay(B) and terminates when rdelayn+1

lp (B) =

rdelayn
lp(B). trsp is the maximum time that it takes to configure the difference between

two resumption points (the maximum progress that is lost when a reconfiguration is

preempted), e.g., trsp = 101 cycles using per-frame resumption points (see Section 4.1.1).

tsync = 470 cycles is the latency of the sendSyncronization command when processed

by the reconfiguration controller. Then, is obtained the reconfiguration delay of a

reconfiguration request from a lower-priority task under reconfiguration preemptions

as

rdelaylp(B) = rdelayn
lp(B) +

⌈
rdelayn

lp(B)

tpreempt

⌉
·waitinghp (5.5)

where waitinghp is the maximum time that the reconfiguration port is occupied by

2Considering 1MB = 1000000Byte and 1MiB = 1024 ∗ 1024Byte, results (4 ·
108[Byte/s])/(10242[Byte/MiB]) = 381.4697265625MiB/s
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higher-priority tasks during a preemption. Note that tpreempt and waitinghp need to be

bounds for tasks from all higher priority levels (than the priority level of the task that

is currently preempted), i.e., for more than two priority levels, this simple analysis will

be imprecise. However, if more than two priority level are provided, it is possible to

easily extend this analysis and integrate it into the response time analysis of the whole

task set. In the following it is shown that a minimum progress for the lower-priority

task can be guaranteed.

Guaranteeing Minimum Reconfiguration Progress under Preemptions

Intuitively a reconfiguration (that is subject to preemptions) advances, when the

time windows of unpreempted reconfiguration are bigger than the latency overhead of

being preempted. More formally, it is shown that minimum reconfiguration progress

can be guaranteed when tpreempt > trsp + tsync (see Section 5.1.2). Minimum progress

during reconfiguration is equivalent to a bound on the reconfiguration delay (see

Eq. (5.5)). Assuming waitinghp is bounded, it is therefore necessary to show that the

iterative process of Eq. (5.4) converges.

Proposition 1 tpreempt > trsp + tsync ⇒ ∃n ∈N : rdelayn+1
lp (B) = rdelayn

lp(B)

Proof: By induction, showing that rdelayn+1
lp (B) ≤ (trsp + tsync + 1) · rdelay(B)

and that the sequence is monotonically increasing.

Convergence of Eq. (5.4) immediately follows from proposition 1. Therefore, it is

possible to guarantee a minimum progress for a reconfiguration that is subject to

preemptions, when the time windows of unpreempted reconfiguration (tpreempt) are

bigger than the latency overhead of being preempted (trsp + tsync).

Figure 5.2 shows how rdelaylp(B) evolves for different values of tpreempt for a

bitstream of B = 338 KiB and different granularities of placing resumption points.
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Figure 5.2: Reconfiguration delay guarantee (rdelaylp(338 KiB), with waitinghp = 0)

for different time windows of unpreempted reconfiguration and different resumption

point types (resulting in different latency overheads of being preempted due to lost

progress in reconfiguration (trsp)).
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waitinghp is set to 0, because the bound of how long a higher-priority task occupies

the reconfiguration port has no impact on convergence of Eq. (5.4), and to focus on

the overhead of preemption. It is observable that tpreempt as well as the granularity

at which resumption points are provided for a certain bitstream have a considerable

impact on whether the reconfiguration delay can be bounded as well as on the size of

the obtainable bounds. Note that tpreempt is measured in cycles of the reconfiguration

controller (running at 100 MHz in the presented case). When using Simple resumption

points only, higher-priority tasks can preempt the lower-priority reconfiguration at most

every 73,290 CPU Cycles (tpreempt = 12, 215 cycles of the reconfiguration controller)

on a 600 MHz CPU so that a minimum progress can be guaranteed. This bound is

more than one magnitude lower for per-frame resumption points. Combining the

results shown in Figure 5.1 and Figure 5.2, it can further be seen that there is a tradeoff

between the minimum guaranteed bandwidth for reconfigurations of the lower-priority

task and the WCET bound on performing preemptions for the higher-priority tasks.

Reasonable tradeoffs can be determined for specific use cases by choosing a suitable

granularity of placing resumption points. This was achieved by introducing per-frame

resumption points in Section 4.1.1.

5.2 Worst-Case Analysis of the Budgeting Approach

As described in Section 4.2, the MPBU has been developed to realize Memory

Protection and Bus Budgeting allowing for a safe and more predictable communication

between the CPU and reconfigurable hardware modules.

Unfortunately, realizing a worst-case analysis which gives worst-case guarantees

regarding the communication between the CPU and the FPGA (as has been done for

preemptive reconfiguration), would be a quite hard task. The main reason resides in the

73



lack of documentation describing the deep functioning of Xilinx and ARM intellectual

properties, i.e., the Xilinx interconnect IP and the ARM memory controller.

For example, Figure 5.3 shows a typical communication chain starting from the

hardware module to the main memory. In the showed chain, it is possible to model the

communication behavior and its timing until the interconnect IP, but beyond that limit

there is no documentation that explains how the interconnect and the memory con-

troller behave and handle conflicts. In particular, no information are available regarding

the scheduling policy of transactions in case of interferences on the communication

bus, neither for the interconnect IP nor for the memory controller.

Hardware

Module
MPBU

AXI

Interconnect

Memory

Controller
DDR

Figure 5.3

The documentation of the interconnect IP states that, with specific settings of the

interconnect instance [61] its behavior is fair, thus all hardware modules connected

to it have the same amount of bus bandwidth (this statement has been verified by

performed experiments in Section 6.2.1). However, the way the memory controller

handles conflicts on its input bus is still missing and it is not possible to gather worst-

case parameters neither for the interconnect IP nor for the memory controller.

Those problems lead to the impossibility of realizing even a simple analysis because

the most important information is missing, i.e., the worst-case amount of time for both

the interconnect and the memory controller to complete a bus transaction. There is no

documentation that provides such information.
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Even if it is possible, through experiments, to empirically measure the longest time

of a transaction over the bus, the analysis that results from it would be imprecise and

not suitable for a real-time system.

Section 6.2 shows that, thanks to the MPBU modules, it is possible to guarantee

at the interconnect port a fixed and upper-bounded bandwidth for each hardware

module, and varying their average execution time.
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Chapter 6

Experimental Evaluation

This Chapter shows the results of preemptive partial reconfiguration and MPBU eval-

uation giving the possibility to analyze an appraise their performance. They have

been developed with the purpose of providing more performance, predictability, and

a better analysis of real-time systems involving FPGAs. As already explained at the

end of Chapter 3, this thesis gives the first, real hardware/software implementation

to enable preemptive partial reconfiguration, memory protection, and bus budgeting.

Therefore, as no results regarding similar architectures are available from the state-of-

the-art, there are no means of comparison. Hence, both solutions have been separately

evaluated to test and analyze their performance.

Both experimental evaluations of this work have been done on a Xilinx Zynq-7z010,

featuring a dual-core ARM Cortex-A9, running at 600 MHz, and an Artix-7 FPGA on

the same SoC [62]. This SoC uses the standard AXI bus interface as the communication

medium between the FPGA and the processing system (ARM cores). The real-time

operating system FreeRTOS1 has been extended to support preemptive reconfiguration

and MPBU: a reconfiguration driver has been added for the custom reconfiguration

1http://www.freertos.org/
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controller, and the task scheduler is aware of pending reconfiguration requests to

wakeup the respective tasks for completed reconfigurations. Moreover, the MPBU

support has been integrated inside FreeRTOS in order to ease the use and configuration

of each MPBU instantiated in the design.

6.1 Evaluation of Preemptive Partial

Reconfiguration

The evaluation of preemptive reconfiguration utilizes two reconfigurable slots

with different dimension and incorporating different type of resources: the bigger

slot has 2,400 LUTs, 10 BlockRAM and 20 DSPs, its bitstream’s size is 364KB and

has a reconfiguration time of 932.35µs; the smaller has 800 LUTs, 10 BlockRAM and

no DSPs, its bitstream’s size is 103KB and has a reconfiguration time of 265.59µs.

Since preempting a reconfiguration could leave part of the reconfigurable slot in an

undefined state, each reconfigurable slot has a hardware decoupler that allows to

decouple the slot during reconfiguration thus preventing spurious signals to affect

the rest of the hardware. As explained in Section 4.1.3, it is possible to define at

design time, the number of command and resume queues, and their size within the

reconfiguration controller. In this evaluation, the reconfiguration controller contains 8

command and resume queues each, one (pair) for each FreeRTOS priority level (see

Section 4.1.3). Each queue can store up to 128 pending reconfiguration commands. The

reconfiguration controller’s interrupt line and interrupt lines for each reconfigurable

slot have been connected to the Zynq system. The reconfiguration controller’s interrupt

line is triggered as soon as a reconfiguration is completed, allowing the reconfiguration

driver to resume the related task. Moreover, the interrupt line of each reconfigurable
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slot is connected to the Zynq processing system allowing the software to be notified

when the hardware execution of each accelerator configured in the slot ends. Figure 6.1

shows the block design of the evaluation system.

PSPL

DDR
Reconfigurable

Slot
Decoupler

Reconfigurable

Slot
Decoupler

High Performance

Ports

DDR

Controller

Zynq 

Processing 

Systems

Slave

Port

(HP0)

Reconfiguration 

Controller

ICAP

FPGA

Configuration 

Memory

Figure 6.1: Block design of the evaluation system for preemptive reconfiguration. The

left block named “PL” represent the Programmable Logic which contains reconfigurable

slots, decouplers and the reconfiguration controller. The right block namend “PS”

represent the Processing System which contains the dual-core ARM A9 and the DDR

controller. PL and PS are able to exchange information through high performance

ports.

The test application consists of two periodic user tasks and one driver task that

handles all reconfiguration requests. Each user task has its own private reconfigurable

slot that reconfigures multiple time during its execution. After a reconfiguration

request, the user tasks self-suspend.

The driver task is the highest priority task in the system and the only task allowed
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to communicate with the reconfiguration controller. It executes immediately after a

reconfiguration request and checks whether the reconfiguration controller is idle or a

reconfiguration is ongoing. If a lower-priority reconfiguration is ongoing, the driver

handles the whole process of preempting the reconfiguration (see Section 4.1.4). In the

performed experiments, only Simple resumption points have been used as they are

enough to guarantee a forward progress for preempted FPGA reconfiguration.

Every time a reconfiguration is completed, the reconfiguration controller triggers

an interrupt and the interrupt handler resumes the user task that requested the recon-

figuration. In order to keep track of all reconfiguration requests and the awakening

order of their related user task, a specific software structure of queues has been built.

In particular, there are 8 software queues (one for each FreeRTOS priority level) storing

the ID of the user task that asked for a reconfiguration. Every time a reconfiguration is

completed, the reconfiguration controller triggers its interrupt and the related software

routine scans the software queue structure to find the highest priority pending request

and resume the related user task. After the reconfiguration of its reconfigurable slot, the

user task feeds the data to the accelerator and self-suspends waiting for the accelerator

to complete its execution.

6.1.1 Resource Utilization

Table 6.2a shows the resource utilization of the entire system while Table 6.2b shows

the resource utilization of the reconfiguration controller. Results in Table 6.2a do not

account for any logic inside the reconfigurable slots, i.e., configured accelerators would

add to the resource utilization.

Utilization rates of the FPGA shown in Tables 6.2a and 6.2b refer to a Zynq-7z010

device which is the smallest Zynq-7000 device. E.g., on the next-bigger Zynq-7z015,
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Resource Utilized Available % Utilized

LUT 7252 17600 41.20%

LUTRAM 729 6000 12.15%

FF 8449 35200 24.00%

BRAM 12.50 60 20.83%

BUFG 10 32 31.25%

(a)

Resource Utilized Available % Utilized

LUT 2006 17600 11.40%

LUTRAM 193 6000 3.22%

FF 2261 35200 6.42%

BRAM 5 60 8.33%

BUFG 8 32 25.00%

(b)

Table 6.1: a) Resource utilization of the whole hardware design. It consists of two

reconfigurable slots and the designed reconfiguration controller that are connected

to the ARM cores on the Xilinx Zynq. b) Resource utilization of the reconfiguration

controller that enables preemptive reconfiguration. It supports 8 priority levels and up

to 128 pending commands for each level. In both tables, percentages refer to a Zynq

7z010 chip.

80



only 15.7% of LUTs and 13.9% of BRAMs would be utilized by the whole hardware

design. On the biggest Zynq-7000, the Zynq-7z100 less than 3% of the resources would

be utilized, respectively. Despite its constrained resources, it is showed that preemptive

reconfiguration can be realized on the low-end Zynq-7z010.

6.1.2 Maximum Observed Execution Time

Three experiments were performed that reflect the motivational examples explained

in Section 3.1 and show the benefits of preemptive reconfiguration. Due to the used

FPGA device, both reconfigurable slots are quite small and have small reconfiguration

time, so small that would have been difficult, with only two tasks in the system, to

clearly show problems of non-preemptive and benefits of preemptive reconfiguration.

For this reason the reconfiguration time of each slot has been software-extended,

associating one reconfiguration request with multiple physical reconfiguration.

In all the experiments, the low-priority task has a fixed period of 50ms and a

reconfiguration time of 32.63ms while the high-priority task period is varied from 5ms

to 44ms with a fixed reconfiguration time of 0.79ms.

Response time analysis in real-time systems needs to provide guarantees for the

worst-case, i.e., that reconfiguration requests from the low-priority and high-priority

tasks are in conflict and that the higher-priority task needs to preempt the lower-priority

reconfiguration. To provoke this case, the tasks perform frequent reconfigurations, but

no additional computations.

Figure 6.2 shows configure-to-completion (Chapter 3, item a)), where the recon-

figuration interface cannot be preempted and the ongoing reconfiguration has to be

completed. In this scenario, both tasks can run concurrently, as Figure 6.2a shows, but

the high-priority task is delayed due to priority inversion. As Figure 6.2c shows, the
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Figure 6.2: Priority inversion experiment. The ongoing reconfiguration can not be

stopped and must be completed before starting another reconfiguration. (a) shows the

start time of both tasks while the period of the high-priority task varies. (b) and (c)

show the distribution of the maximum observed execution time of user tasks for each

value of the high-priority task period.

maximum execution time of the high-priority task that has been measured is 32.45ms.

Figure 6.3 shows the abort approach (Chapter 3, item b)). This approach allows to

abort the ongoing reconfiguration and restart it later from the beginning. Figure 6.3a

shows the start time of both user tasks while the period of the high priority task varies.

Both user tasks are periodic and the start time is the time where a task starts its routine

from the beginning, and it is clearly visible that the low-priority task starves until the

high-priority task period reaches 34ms. Then, the period of the high-priority task is

large enough to allow the low-priority one to reconfigure the FPGA.

Figure 6.4 shows the preemption approach, i.e., it is possible to preempt and later

resume the ongoing reconfiguration (Chapter 3, item c)) while keeping the reconfig-

uration progress. Both tasks benefit from preemptable reconfiguration because the

low-priority task does not suffer from starvation while the high-priority task does

not experience priority inversion. Therefore, as Figure 6.4a shows, both task can run

82



Ta
sk

 S
ta

rt
 T

im
e 

(m
s)

0

2e+04

4e+04

6e+04

8e+04

High-priority Task Period (ms)
0 5 10 15 20 25 30 35 40 45

Low-priority Task
High-priority Task

(a)

Max Execution Time =1664.91ms 
Average Execution Time = 34.60ms

Ta
sk

 E
xe

cu
ti

on
 T

im
e 

(m
s)

0

20

40

60

80

High-priority Task Period (ms)
0 10 20 30 40

Low-priority Task

(b)

Max Execution Time = 0.811ms 
Average Execution Time = 0.809ms

Ta
sk

 E
xe

cu
ti

on
 T

im
e 

(m
s)

0

0.2

0.4

0.6

0.8

1

High-priority Task Period (ms)
0 5 10 15 20 25 30 35 40 45

High-priority Task

(c)

Figure 6.3: Abort experiment. The ongoing reconfiguration can be aborted and later

restarted from the beginning. (a) shows the start time of both tasks while the period

of the high-priority task varies. (b) and (c) show the distribution of the maximum

observed execution time of user tasks for each value of the high-priority task period.
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Figure 6.4: Preemption experiment. The ongoing reconfiguration can be preempted to

serve an higher priority reconfiguration request and later resumed. (a) shows the start

time of both tasks while the period of the high-priority task varies. (b) and (c) show the

distribution of the maximum observed execution time of user tasks for each value of

the high-priority task period.
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Configure-to-completion Abort Preemption

LP Task HP Task LP Task HP Task LP Task HP Task

MOET 33, 46ms 2, 45ms 1664, 12ms 0, 811ms 42, 34ms 0, 81ms

AOET 32, 68ms 0, 805ms 33, 16ms 0, 808ms 32, 68ms 0, 805ms

Table 6.2: Summary of the Maximum Observed Execution Time (MOET) and Average

Observed Execution Time (AOET) of both tasks.

concurrently on the system, reconfiguring the FPGA.

As all the experiments show, priority inversion increased the execution time of the

high-priority tasks by more than 3 times and starvation prevented the low-priority

task to complete its execution. Preemptable reconfiguration solved these problems by

avoiding priority inversion and preventing the low-priority task to starve, allowing it

to improve the utilization of the system.

Table 6.2 compares the most significant results from the experiments.

6.2 Evaluation of Memory Protection

and Budgeting Unit

To extensively evaluate and analyze the effectiveness of the reservation mecha-

nism enforced by the MPBU, it is necessary to have hardware module continuously

performing transactions on the main bus.

This experimental evaluation, models a scenario where multiple high-performance

hardware accelerators access a bus to share the same memory controller. Each ac-

celerator acts like an active component or co-processor in the system being able to

autonomously generate memory transactions to the main memory.
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For the purpose of this evaluation, hardware accelerators have been implemented

as custom hardware modules that act like a DMA2 (i.e., copying a memory buffer from

a location to another) because, from a bus and memory contention perspective, the

only visible effect of the accelerators’ activity are bus transactions being generated.

Therefore, a DMA module can be considered as an “upper bound” of the behavior of an

active accelerator since its only function is to move data at the maximum possible rate

thus stressing the communication bus without being slowed by any possible internal

processing.

Such modules can be programmed and controlled by the processor through a set of

control registers where it is possible to specify the source and destination addresses. In

this evaluation, all the hardware modules are programmed to move a fixed amount of

data of 2MiB (they read and write 1MiB).

Hardware System Description The evaluation of Memory Protection and Budgeting

Unit utilizes four hardware modules connected, through a standard AXI interconnect

IP [61], to one high performance port of the processing system. The interconnect IP is

used in performance mode in order to maximize the performance of the infrastructure

IP cores used within the interconnect instance. Specifically, the IP is configured in

Shared-Address/Multiple-Data (SAMD) mode, packet-mode FIFOs are enabled on all

the slave interfaces, and multiple outstanding transactions for each connected master

and slave are allowed [61].

Between each module and the interconnect, an MPBU module is placed performing

memory protection and bus budgeting. All the MPBU modules are managed by the

MPBU controller which, in turn, is software programmable (see Section 4.2.1). As

described in Section 4.2.1 the only programmable parameter of the MPBU controller,

2Direct Memory Access
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which must be decided at compiling time, specifies the number of MPBUs that the

user would like to connect to it: in this evaluation it has been configured to manage 4

MPBU.

From the PL-PS interconnection perspective, this hardware system represents a

sort of “worst-case” scenario in which only a single Zynq’s high performance port is

used. This choice has been made to simulate a more realistic scenario which considers

a heterogeneous SoC with a large FPGA where many hardware accelerators share a

limited number of memory access ports.

Moreover, all the interrupt lines belonging to each MPBU have been connected to

the Zynq system. When a hardware module performs an illegal memory access, the

corresponding MPBU’s interrupt line is set and the Zynq system can asynchronously

handle the problem, removing the illegal condition from the system bus. Figure 6.5

shows the block diagram of the evaluation system used for MPBUs.

Resource Utilization Table 6.3 shows the resource utilization of both MPBU and

MPBU controller individually and of the entire MPBU evaluation system.

Utilization rates of the FPGA shown in Table 6.3 refer to a Zynq-7z010 device which

is the smallest Zynq-7000 device. Moreover, despite the design only requires one

MPBU controller, each hardware module would need a different MPBU. Therefore the

resource utilization increases proportionally with the number of module and MPBUs

that are instantiated.

Note that addressing greater devices embedding more resources, the utilization

rates decrease drastically.

Software Description As described in Chapter 6, the software relies on FreeRTOS

and performs MPBU configuration and module enabling.
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Figure 6.5: Block diagram of the system used to evaluate the MPBUs. Each hardware

task can access the main memory through an MPBU unit which provides memory

protection and transaction budgeting. MPBUs are connected to the main memory

through an AXI Interconnect IP which arbitrates the multi-master access to the memory.

The MPBU controller acts as a bridge between the Zynq’s AXI interface and the custom

interface used to configure the MPBUs.
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Evaluation System MPBU MPBU Controller

Resource Available Utilized (%) Utilized (%) Utilized (%)

LUT 17600 12530 (71.19%) 1211 (6.88%) 360 (2.88%)

LUTRAM 6000 1652 (27.53%) 0 (0%) 0 (0%)

FF 35200 18870 (53.61%) 777 (2.21%) 561 (1.59%)

BRAM 60 28 (46.67%) 0 (0%) 0 (0%)

BUFG 32 1 (3.13%) 1 (3.13%) 1 (3.13%)

Table 6.3: The third column reports the resource utilization of the whole hardware

design used for the MPBU evaluation. It consists of four hardware task connected,

through a standard AXI interconnect IP, to one high performance port of the processing

system. Last two columns report the resource utilization of the MPBU controller and

one MPBU unit both enabling memory protection and bus budgeting. In both tables,

percentages refer to a Zynq 7z010 chip.
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The four hardware modules are managed by four periodic tasks running on top

of the operating system and each task controls a specific module. All tasks in all

experiments are equivalent: they have the same priority and a fixed period of 250ms in

order to generate the maximum possible contention on the memory bus.

During its execution, a task programs and launches its correspondent hardware

module and self-suspends waiting for the hardware to complete its memory transfer.

Once the hardware module completes its memory transfer, sends an interrupt to the

processor and the corresponding interrupt service routine provides wakes up the

correct task.

6.2.1 Evaluation’s Results

A set of experiments have been created in order to extensively test and evaluate the

MPBU.

Baseline Performance Experiments In particular, the first set of experiments aim

at calculating the baseline bandwidth performance of hardware modules and bus.

In this experiments, the MPBU modules are disabled (i.e., transparent) to avoid any

interference and it has been measured the real throughput of one hardware module

when one, two, three or four modules compete for the memory.

Table 6.4 shows the the downstream bandwidth of each hardware module and the

execution time of the related software task. In particular, it is possible to notice that a

single, standalone, hardware module has a downstream bandwidth of ' 755MiB/s

while having multiple modules running in parallel leads to a progressive reduction

of the bandwidth due to the contention. By multiplying the effective single-module

downstream bandwidth times the number of active modules (or tasks), it is possible

to estimate the total available bandwidth the interconnect and memory controller can
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Exp Task
Observed exec time

Avg task demand [MiB/s] Avg Int+Mem supply [MiB/s]
Avg [ms] Worst [ms]

0 0 2.6483 2.6502 754.6457 754.6457

1
0 2.8077 2.8170 712.3147

1424.6046
1 2.8078 2.8172 712.2899

2

0 4.2311 4.3309 472.6855

1418.03661 4.2311 4.3300 472.6896

2 4.2313 4.3293 472.6615

3

0 5.5109 5.5506 362.9160

1451.1384
1 5.5135 5.5535 362.7400

2 5.5139 5.5535 362.7187

3 5.5132 5.5528 362.7637

Table 6.4: A single, standalone hardware module has a downstream bandwidth of

' 755MiB/s. However, as the number of concurrently active hardware modules

increases, the throughput of a single module decreases due to contentions of the

communication bus. The table shows that the bandwidth the memory controller can

handle saturates at an average value of ' 1430MiB/s.

handle. The maximum bandwidth estimation is ' 1430MiB/s.

This set of experiments show that the whole infrastructure, including the intercon-

nect and the memory controller, is fair thus the available bandwidth is shared equally

among the contenders. This validates the initial assumption (see Section 5.2) and allows

to implement a reservation mechanisms using the MPBU on top of a fair infrastructure.

Figure 6.6 shows the results in term of software task execution time.

Reservation Experiments A second set of experiments has been carried out to evalu-

ate the effectiveness of the bandwidth reservation mechanism enforced by the MPBU.

In these experiments, the hardware modules are supervised by the MPBU thus the
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Figure 6.6: Baseline bandwidth of hardware modules and AXI bus in terms of execution

time. In this experiment each hardware module moves 2 MiB (reads and writes 1MiB

of data) and each MPBU is disabled in order not to affect the module’s performance.

The left and right edges of colored boxes are the first and third quartiles while the band

inside it represent the median (second quartile). Black, vertical lines at the ends of each

row are the minimum and maximum of all of the data.

amount of transactions that a hardware module can perform, during each MPBU

period, is upper bounded by its budget.

In this set of experiments, all four hardware modules are periodically activated

by a set of four tasks running with the same period of 250ms. Moreover, one MPBU

have its transaction budget fixed to 48 while other two to 32. The transaction budget of

the last MPBU increases, from the first to the fourth experiments, from 64 to 128. The

budget refresh period is 128 clock cycles for all MPBUs. Table 6.5 summarizes MPBUs’

parameters across all the experiments.

The results of all four experiments are summarized in Figure 6.7. By observing

the execution time of software tasks it is possible to evaluate the effectiveness of the

reservation mechanism. Each hardware module (and its related task) can access only a

predefined fraction of the total available bandwidth and it is upper-bounded by the

MPBU. Moreover, increasing the transaction budget of one module, within the available
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MPBU
Budget (transactions)

Refreshing Period (clock cycles)
Exp. 1 Exp. 1 Exp. 1 Exp. 1

MPBU0 64 80 96 128 128

MPBU1 48 48 48 48 128

MPBU2 32 32 32 32 128

MPBU3 32 32 32 32 128

Table 6.5: Summary of MPBUs’ settings for reservation experiments. Three MPBUs

have fixed parameters while the transaction budget of MPBU0 increases from the first

to the fourth experiment.

bandwidth limit, does not affect the throughput of the other modules and consequently,

the execution time of their software tasks. Since all the hardware modules tries to access

the memory at the maximum rate they are capable of, it is worth to notice that this

propriety is enforced by the MPBU independently from the behavior of the hardware

module.
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Figure 6.7: Summary of tasks’ execution time across all the reservation experiments.

The MPBU guarantees that each hardware module accesses only a predefined fraction

of the total available bandwidth. Therefore, increasing the transaction budget of one

module does not affect the throughput of the other modules and, consequently, the

execution time of their software tasks.
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Chapter 7

Conclusions

This work has been developed with the purpose of providing more performance,

predictability, and a better analysis of real-time systems involving FPGAs in order to

improve and ease the integration of FPGAs in such systems.

In particular, this thesis presented the first production of preemptive reconfiguration

for Xilinx 7 series FPGAs and SoCs which uses the ICAP and solved the problems of

priority inversion and starvation caused by contention on the reconfiguration port. To

achieve preemptive reconfiguration, resumption points have been defined, i.e., parts of a

bitstream from which a preempted reconfiguration can safely be resumed. Furthermore,

methods to determine all possible and safe resumption points have been presented.

Resumption points have been leveraged by a combination of a custom command-based

reconfiguration controller and a reconfiguration driver that manage reconfiguration

requests and handle reconfiguration preemption and resumption.

Worst-case bounds on the latency overhead that a higher-priority task experiences

when preempting a lower-priority task and upper bounds on the reconfiguration delay –

experienced by the lower-priority task for a given worst-case interval of reconfiguration

preemptions – have been analytically determined and revealed the trade-off between
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the minimum guaranteed bandwidth for reconfigurations of lower-priority tasks and

the WCET bound on performing preemptions for higher-priority tasks. Experimental

results showed that priority inversion and starvation caused by contentions on the

reconfiguration port are effectively solved using the proposed realization of preemptive

reconfiguration, when integrated into the industry-grade real-time operating system

FreeRTOS. As this work presented the first, real approach to enable preemptive par-

tial reconfiguration, comparison with state-of-the-art methods providing the same

functionality on FPGAs has not been possible.

Preemptive partial reconfiguration has been achieved even on a low-end (in terms

of resources) reconfigurable device, the Xilinx Zynq-7z010. In total, it has been shown

that the overhead for achieving preemptive reconfiguration is considerably outweighed

by the benefits it provides. In particular, while the average measured execution time

of both tasks is similar across all the experiments, the measured worst-case execution

time have been significantly improved. Using preemptive reconfiguration, the delay

experienced by the high-priority task has been reduced by 3 times with respect to

configure-to-completion experiment where priority inversion arises. Moreover, the

measured worst-case execution time of the low-priority task has been reduced by 39

times compared to abort experiment where starvation affects the low-priority tasks

preventing it to proceed with its execution.

Preemptive resources are fundamental to fulfill real-time constraints and this work

enables multi-priority real-time systems (including mixed-criticality systems) to benefit

from runtime-reconfigurable hardware accelerators with preemptive reconfiguration

capabilities.

Moreover, the first, custom approach to solve memory corruption and bus chocking

problems in FPGA-accelerated real-time systems has been presented. Those problems

could arise in a reconfigurable FPGA system where misbehaving custom hardware
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accelerators are deployed inside reconfigurable slots at runtime. In those systems,

where the FPGA is used as a hardware co-processor to support a standard CPU in

speeding up compute-intensive functions, the accelerators have full access to the main

memory thus a bugged/malicious accelerator could jeopardize the functionality of the

whole system.

A custom Memory Protection and Budgeting Unit, which does not affect the AXI

bus performance and throughput, have been designed and realized in order to avoid

memory corruption and bus chocking problems. Moreover, the MPBU alleviate the

unpredictability of the communication bus used in an FPGA-based system for real-time

applications, allowing to have a more predictable system with less timing constraints

thanks to the bus bandwidth budgeting.

Experiments with MPBUs have been performed to verify their functioning, per-

formance and the real available bandwidth of the Zynq memory controller. Those

experiments show that the total bandwidth available from the interconnect and the

memory controller can be estimated in the order of ' 1430MiB/s. Moreover, it has

been verified that the proposed budgeting approach, implemented by the MPBU, guar-

antees a programmable bandwidth reservation for each task and does not affect other

tasks performance. Eventually, it has been showed that memory corruption and bus

chocking problems can be avoided and the communication over a shared bus can

be made more predictable allowing to have less stringent timing constraints in the

analysis. Results on MPBU’s performance have not been compared to state-of-the-art

results as there is no similar hardware in literature providing the same functionalities.

Details on the hardware and software designs have been reported, describing

the method used to implement preemptive reconfiguration, memory protection and

bandwidth budgeting and explaining the software functionalities to configure and use

the IPs.
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